Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1976 May 15;156(2):239–244. doi: 10.1042/bj1560239

Synthesis of adenosine triphosphate during release of intravesicular and membrane-bound calcium ions from passively loaded sarcoplasmic reticulum.

G P Vale, R Osório, E Castro, A P Carvalho
PMCID: PMC1163742  PMID: 821477

Abstract

Sarcoplasmic reticulum isolated from rabbit skeletal muscle and incubated in a medium containing Ca2+ in the absence of ATP retains intravesicular and/or membrane-bound Ca2+. The synthesis of ATP coupled with the release of intravesicular Ca2+ is totally inhibited by the ionophore X-537A. Release of the membrane-bound Ca2+, retained after short periods of incubation (10min) or after release of the intravesicular Ca2+ by ionophore X-537A, still supports some synthesis of ATP. The ratios of Ca2+ released to ATP synthesized are 2.5-3.2, when bound and intravesicular Ca2+ are released simultaneously, and 3.1-4.0, when only bound Ca2+ is released. The results show that the synthesis of ATP by sarcoplasmic reticulum during release of passively accumulated Ca2+ by EGTA [ethanedioxybis(ethylamine)tetra-acetic acid] is accompanied by a loss of membrane-bound Ca2+.

Full text

PDF
239

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barlogie B., Hasselbach W., Makinose M. Activation of calcium efflux by ADP and inorganic phosphate. FEBS Lett. 1971 Jan 30;12(5):267–268. doi: 10.1016/0014-5793(71)80194-1. [DOI] [PubMed] [Google Scholar]
  2. Carvalho A. P., Leo B. Effects of ATP on the interaction of Ca++, Mg++, and K+ with fragmented sarcoplasmic reticulum isolated from rabbit skeletal muscle. J Gen Physiol. 1967 May;50(5):1327–1352. doi: 10.1085/jgp.50.5.1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Deamer D. W., Baskin R. J. ATP synthesis in sarcoplasmic reticulum. Arch Biochem Biophys. 1972 Nov;153(1):47–54. doi: 10.1016/0003-9861(72)90418-3. [DOI] [PubMed] [Google Scholar]
  4. Inesi G., Millman M., Eletr S. Temperature-induced transitions of function and structure in sarcoplasmic reticulum membranes. J Mol Biol. 1973 Dec 25;81(4):483–504. doi: 10.1016/0022-2836(73)90518-4. [DOI] [PubMed] [Google Scholar]
  5. Knowles A. F., Racker E. Formation of adenosine triphosphate from Pi and adenosine diphosphate by purified Ca-2+-adenosine triphosphatase. J Biol Chem. 1975 Mar 10;250(5):1949–1951. [PubMed] [Google Scholar]
  6. MARTONOSI A., FERETOS R. SARCOPLASMIC RETICULUM. I. THE UPTAKE OF CA++ BY SARCOPLASMIC RETICULUM FRAGMENTS. J Biol Chem. 1964 Feb;239:648–658. [PubMed] [Google Scholar]
  7. Makinose M., Hasselbach W. ATP synthesis by the reverse of the sarcoplasmic calcium pump. FEBS Lett. 1971 Jan 30;12(5):271–272. doi: 10.1016/0014-5793(71)80196-5. [DOI] [PubMed] [Google Scholar]
  8. Makinose M. Phosphoprotein formation during osmo-chemical energy conversion in the membrane of the sarcoplasmic reticulum. FEBS Lett. 1972 Sep 1;25(1):113–115. doi: 10.1016/0014-5793(72)80466-6. [DOI] [PubMed] [Google Scholar]
  9. Masuda H., de Meis L. Phosphorylation of the sarcoplasmic reticulum membrane by orthophosphate. Inhibition by calcium ions. Biochemistry. 1973 Nov 6;12(23):4581–4585. doi: 10.1021/bi00747a006. [DOI] [PubMed] [Google Scholar]
  10. Panet R., Selinger Z. Synthesis of ATP coupled to Ca 2+ release from sarcoplasmic reticulum vesicles. Biochim Biophys Acta. 1972 Jan 17;255(1):34–42. doi: 10.1016/0005-2736(72)90005-3. [DOI] [PubMed] [Google Scholar]
  11. Scarpa A., Baldassare J., Inesi G. The effect of calcium ionophores on fragmented sarcoplasmic reticulum. J Gen Physiol. 1972 Dec;60(6):735–749. doi: 10.1085/jgp.60.6.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Vale M. G., Carvalho A. P. Utilization of X-537A to distinguish between intravesicular and membrane-bound calcium ions in sarcoplasmic reticulum. Biochim Biophys Acta. 1975 Dec 1;413(2):202–212. doi: 10.1016/0005-2736(75)90104-2. [DOI] [PubMed] [Google Scholar]
  13. Yamada S., Sumida M., Tonomura Y. Reaction mechanism of the Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. 8. Molecular mechanism of the conversion of osmotic energy to chemical energy in the sarcoplasmic reticulum. J Biochem. 1972 Dec;72(6):1537–1548. doi: 10.1093/oxfordjournals.jbchem.a130045. [DOI] [PubMed] [Google Scholar]
  14. Yamada S., Tonomura Y. Reaction mechanism of the Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. IX. Kinetic studies on the conversion of osmotic energy to chemical energy in the sarcoplasmic reticulum. J Biochem. 1973 Dec;74(6):1091–1096. doi: 10.1093/oxfordjournals.jbchem.a130336. [DOI] [PubMed] [Google Scholar]
  15. de Meis L., Costa Carvalho M. da G. Role of the Ca2+ concentration gradient in the adenosine 5'-triphosphate-inorganic phosphate exchange catalyzed by sarcoplasmic reticulum. Biochemistry. 1974 Nov 19;13(24):5032–5038. doi: 10.1021/bi00721a026. [DOI] [PubMed] [Google Scholar]
  16. de Meis L., Masuda H. Phosphorylation of the sarcoplasmic reticulum membrane by orthophosphate through two different reactions. Biochemistry. 1974 May 7;13(10):2057–2062. doi: 10.1021/bi00707a009. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES