Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1976 Jun 15;156(3):577–583. doi: 10.1042/bj1560577

Erythrocyte calcium metabolism. Calcium exchange in normal and sickle-cell-anaemia erythrocytes.

B F Cameron, P E Smariga
PMCID: PMC1163791  PMID: 949340

Abstract

Under exchange conditions (no net increase in calcium), erythrocytes incubated in isoosmotic phosphate-buffered saline have an exchangeable calcium pool comprising about 10% of the total erythrocyte calcium. This pool reaches exchange equilibrium, for either inward-directed or outward-directed transfer of the 45Ca-exchange label, with a half-time of about 20 min. The uptake of Ca2+ requires phosphate, even under hypo-osmotic conditions, where the calcium loading expected as the cells swell is obtained only when phosphate is present. The phosphate requirement is not due to Ca2+ transport as a phosphate salt. This exchangeable-calcium pool is also present in sickle-cell-anemia erythrocytes, and comprises a similar proportion of total cellular calcium.

Full text

PDF
577

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cameron B. F. Determination of iron in heme compounds. II. Hemoglobin and myoglobin. Anal Biochem. 1965 May;11(2):164–169. doi: 10.1016/0003-2697(65)90002-3. [DOI] [PubMed] [Google Scholar]
  2. Eaton J. W., Skelton T. D., Swofford H. S., Kolpin C. E., Jacob H. S. Elevated erythrocyte calcium in sickle cell disease. Nature. 1973 Nov 9;246(5428):105–106. doi: 10.1038/246105a0. [DOI] [PubMed] [Google Scholar]
  3. Harrison D. G., Long C. The calcium content of human erythrocytes. J Physiol. 1968 Dec;199(2):367–381. doi: 10.1113/jphysiol.1968.sp008658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Horton C. R., Cole W. Q. Depressed (Ca++)-transport ATPase in cystic fibrosis erythrocytes. Biochem Biophys Res Commun. 1970 Aug 11;40(3):505–509. doi: 10.1016/0006-291x(70)90930-7. [DOI] [PubMed] [Google Scholar]
  5. KAHN J. B., Jr Relations between calcium and potassium transfer in human erythrocytes. J Pharmacol Exp Ther. 1958 Aug;123(4):263–268. [PubMed] [Google Scholar]
  6. Kneece W. C., Jr, Leif R. C. The effect of pH, potassium, sodium, bicarbonate, and chloride ions and glucose on the buoyant density distribution of human erythrocytes in bovine serum albumin gradients. J Cell Physiol. 1971 Oct;78(2):185–199. doi: 10.1002/jcp.1040780205. [DOI] [PubMed] [Google Scholar]
  7. LEIF R. C., VINOGRAD J. THE DISTRIBUTION OF BUOYANT DENSITY OF HUMAN ERYTHROCYTES IN BOVINE ALBUMIN SOLUTIONS. Proc Natl Acad Sci U S A. 1964 Mar;51:520–528. doi: 10.1073/pnas.51.3.520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. La Celle P. L., Kirkpatrick F. H., Udkow M. P., Arkin B. Membrane fragmentation and Ca ++ -membrane interaction: potential mechanisms of shape change in the senescent red cell. Nouv Rev Fr Hematol. 1972 Nov-Dec;12(6):789–798. [PubMed] [Google Scholar]
  9. Lew V. L. On the ATP dependence of the Ca 2+ -induced increase in K + permeability observed in human red cells. Biochim Biophys Acta. 1971 Jun 1;233(3):827–830. doi: 10.1016/0005-2736(71)90185-4. [DOI] [PubMed] [Google Scholar]
  10. Long C., Mouat B. The binding of calcium ions by erythrocytes and 'ghost' -cell membranes. Biochem J. 1971 Aug;123(5):829–836. doi: 10.1042/bj1230829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Long C., Mouat B. The influx of calcium ions into human erythrocytes during cold storage. Biochem J. 1973 Mar;132(3):559–570. doi: 10.1042/bj1320559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Palek J., Curby W. A., Lionetti F. J. Effects of calcium and adenosine triphosphate on volume of human red cell ghosts. Am J Physiol. 1971 Jan;220(1):19–26. doi: 10.1152/ajplegacy.1971.220.1.19. [DOI] [PubMed] [Google Scholar]
  13. Porzig H. Calcium-calcium and calcium-strontium exchange across the membrane of human red cell ghosts. J Membr Biol. 1973 Jan 23;11(1):21–46. doi: 10.1007/BF01869811. [DOI] [PubMed] [Google Scholar]
  14. RUMMEL W., SEIFEN E., BALDAUF J. [Uptake and release of calcium in erythrocytes in man]. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1962;244:172–184. [PubMed] [Google Scholar]
  15. Schatzmann H. J. Dependence on calcium concentration and stoichiometry of the calcium pump in human red cells. J Physiol. 1973 Dec;235(2):551–569. doi: 10.1113/jphysiol.1973.sp010403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schatzmann H. J., Vincenzi F. F. Calcium movements across the membrane of human red cells. J Physiol. 1969 Apr;201(2):369–395. doi: 10.1113/jphysiol.1969.sp008761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Weed R. I., LaCelle P. L., Merrill E. W. Metabolic dependence of red cell deformability. J Clin Invest. 1969 May;48(5):795–809. doi: 10.1172/JCI106038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. ZIJLSTRA W. G., van KAMPEN E. Standardization of hemoglobinometry. I. The extinction coefficient of hemiglobincyanide. Clin Chim Acta. 1960 Sep;5:719–726. doi: 10.1016/0009-8981(60)90014-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES