Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1976 Jun 15;156(3):635–646. doi: 10.1042/bj1560635

The calcium conductance of the inner membrane of rat liver mitochondria and the determination of the calcium electrochemical gradient.

G M Heaton, D G Nicholls
PMCID: PMC1163798  PMID: 949345

Abstract

1. A method is described for establishing steady-state conditions of calcium transport across the inner membrane of rat liver mitochondria and for determining the current of Ca2+ flowing across the membrane, together with the Ca2+ electrochemical gradient across the native Ca2+ carrier. These parameters were used to quantify the apparent Ca2+ conductance of the native carrier. 2. At 23 degrees C and pH7.0, the apparent Ca2+ conductance of the carrier is close to 1 nmol of Ca2+-min-1-mg of protein-1 mV-1. Proton extrusion by the respiratory chain, rather than the Ca2+ carrier itself, may often be rate-limiting in studies of initial rates of Ca2+ uptake. 3. Under parallel conditions, the endogenous H+ conductance of the membrane is 0.3 nmol of H+-min-1-mg of protein-1-mV-1. 4. Ruthenium Red and La3+ both strongly inhibit the Ca2+ conductance of the carrier, but are without effect on the H+ conductance of the membrane. 5. The apparent Ca2+ conductance of the carrier shows a sigmoidal dependence on the activity of Ca2+ in the medium. At 23 degrees C and pH7.2, half-maximum conductance is obtained at a Ca2+ activity of 4.7 muM. 6. The apparent Ca2+ conductance and the H+ conductance of the inner membrane increase fourfold from 23 degrees to 38 degrees C. The apparent Arrhenius activation energy for Ca2+ transport is 69kJ/mol. The H+ electrochemical gradient maintained in the absence of Ca2+ transport does not vary significantly with temperature. 7. The apparent Ca2+ conductance increases fivefold on increasing the pH of the medium from 6.8 to 8.0. The H+ conductance of the membrane does not vary significantly with pH over this range. 8. Mg2+ has no effect on the apparent Ca2+ conductance when added at concentration up to 1 mM. 9. Results are compared with classical methods of studying Ca2+ transport across the mitochondrial inner membrane.

Full text

PDF
635

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brand M. D., Lehninger A. L. Superstoichiometric Ca2+ uptake supported by hydrolysis of endogenous ATP in rat liver mitochondria. J Biol Chem. 1975 Oct 10;250(19):7958–7960. [PubMed] [Google Scholar]
  2. Bygrave F. L., Daday A. A., Doy F. A. Evidence of a calcium-ion-transport system in mitochondria isolated from flight muscle of the developing sheep blowfly Lucilia cuprina. Biochem J. 1975 Mar;146(3):601–608. doi: 10.1042/bj1460601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bygrave F. L., Reed K. C., Spencer T. Cooperative interactions in energy-dependent accumulation of Ca2+ by isolated rat liver mitochondria. Nat New Biol. 1971 Mar 17;230(11):89–89. doi: 10.1038/newbio230089a0. [DOI] [PubMed] [Google Scholar]
  4. CHANCE B. THE ENERGY-LINKED REACTION OF CALCIUM WITH MITOCHONDRIA. J Biol Chem. 1965 Jun;240:2729–2748. [PubMed] [Google Scholar]
  5. Carafoli E., Azzi A. The affinity of mitochondria for Ca ++ . Experientia. 1972 Aug 15;28(8):906–908. doi: 10.1007/BF01924937. [DOI] [PubMed] [Google Scholar]
  6. Carafoli E., Gamble R. L., Lehninger A. L. On the maximum stoichiometry of energy-linked Ca++ accumulation during electron transport in rat liver mitochondria. Biochem Biophys Res Commun. 1965 Nov 8;21(3):215–220. doi: 10.1016/0006-291x(65)90274-3. [DOI] [PubMed] [Google Scholar]
  7. Carafoli E., Gamble R. L., Rossi C. S., Lehninger A. L. Super-stoichiometric ratios between ion movements and electron transport in rat liver mitochondria. J Biol Chem. 1967 Mar 25;242(6):1199–1204. [PubMed] [Google Scholar]
  8. Carafoli E., Lehninger A. L. A survey of the interaction of calcium ions with mitochondria from different tissues and species. Biochem J. 1971 May;122(5):681–690. doi: 10.1042/bj1220681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Carafoli E. Mitochondrial uptake of calcium ions and the regulation of cell function. Biochem Soc Symp. 1974;(39):89–109. [PubMed] [Google Scholar]
  10. Chance B., Mela L. Hydrogen ion concentration changes in mitochondrial membranes. J Biol Chem. 1966 Oct 25;241(20):4588–4599. [PubMed] [Google Scholar]
  11. Chance B., Schoener B. High and low energy states of cytochromes. 3. In reactions with cations. J Biol Chem. 1966 Oct 25;241(20):4577–4587. [PubMed] [Google Scholar]
  12. DRAHOTA Z., CARAFOLI E., ROSSI C. S., GAMBLE R. L., LEHNINGER A. L. THE STEADY STATE MAINTENANCE OF ACCUMULATED CA++ IN RAT LIVER MITOCHONDRIA. J Biol Chem. 1965 Jun;240:2712–2720. [PubMed] [Google Scholar]
  13. Gear A. R., Lehninger A. L. Rapid, respiration-independent binding of alkali metal cations by rat liver mitochondria. J Biol Chem. 1968 Jul 25;243(14):3953–3962. [PubMed] [Google Scholar]
  14. Lehninger A. L., Carafoli E., Rossi C. S. Energy-linked ion movements in mitochondrial systems. Adv Enzymol Relat Areas Mol Biol. 1967;29:259–320. doi: 10.1002/9780470122747.ch6. [DOI] [PubMed] [Google Scholar]
  15. Lehninger A. L., Carafoli E. The interaction of La 3+ with mitochondria in relation to respiration-coupled Ca 2+ transport. Arch Biochem Biophys. 1971 Apr;143(2):506–515. doi: 10.1016/0003-9861(71)90235-9. [DOI] [PubMed] [Google Scholar]
  16. Lehninger A. L. Mitochondria and calcium ion transport. Biochem J. 1970 Sep;119(2):129–138. doi: 10.1042/bj1190129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mela L. Interactions of La3+ and local anesthetic drugs with mitochondrial Ca++ and Mn++ uptake. Arch Biochem Biophys. 1968 Feb;123(2):286–293. doi: 10.1016/0003-9861(68)90136-7. [DOI] [PubMed] [Google Scholar]
  18. Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc. 1966 Aug;41(3):445–502. doi: 10.1111/j.1469-185x.1966.tb01501.x. [DOI] [PubMed] [Google Scholar]
  19. Mitchell P., Moyle J. Acid-base titration across the membrane system of rat-liver mitochondria. Catalysis by uncouplers. Biochem J. 1967 Aug;104(2):588–600. doi: 10.1042/bj1040588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mitchell P., Moyle J. Estimation of membrane potential and pH difference across the cristae membrane of rat liver mitochondria. Eur J Biochem. 1969 Feb;7(4):471–484. doi: 10.1111/j.1432-1033.1969.tb19633.x. [DOI] [PubMed] [Google Scholar]
  21. Mitchell P., Moyle J. Respiration-driven proton translocation in rat liver mitochondria. Biochem J. 1967 Dec;105(3):1147–1162. doi: 10.1042/bj1051147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mitchell P., Moyle J. Translocation of some anions cations and acids in rat liver mitochondria. Eur J Biochem. 1969 Jun;9(2):149–155. doi: 10.1111/j.1432-1033.1969.tb00588.x. [DOI] [PubMed] [Google Scholar]
  23. Moore C. L. Specific inhibition of mitochondrial Ca++ transport by ruthenium red. Biochem Biophys Res Commun. 1971 Jan 22;42(2):298–305. doi: 10.1016/0006-291x(71)90102-1. [DOI] [PubMed] [Google Scholar]
  24. Nicholls D. G. Hamster brown-adipose-tissue mitochondria. The chloride permeability of the inner membrane under respiring conditions, the influence of purine nucleotides. Eur J Biochem. 1974 Dec 2;49(3):585–593. doi: 10.1111/j.1432-1033.1974.tb03862.x. [DOI] [PubMed] [Google Scholar]
  25. Nicholls D. G. Hamster brown-adipose-tissue mitochondria. The control of respiration and the proton electrochemical potential gradient by possible physiological effectors of the proton conductance of the inner membrane. Eur J Biochem. 1974 Dec 2;49(3):573–583. doi: 10.1111/j.1432-1033.1974.tb03861.x. [DOI] [PubMed] [Google Scholar]
  26. Nicholls D. G. The influence of respiration and ATP hydrolysis on the proton-electrochemical gradient across the inner membrane of rat-liver mitochondria as determined by ion distribution. Eur J Biochem. 1974 Dec 16;50(1):305–315. doi: 10.1111/j.1432-1033.1974.tb03899.x. [DOI] [PubMed] [Google Scholar]
  27. Pfeiffer D. R., Reed P. W., Lardy H. A. Ultraviolet and fluorescent spectral properties of the divalent cation ionophore A23187 and its metal ion complexes. Biochemistry. 1974 Sep 10;13(19):4007–4014. doi: 10.1021/bi00716a029. [DOI] [PubMed] [Google Scholar]
  28. Puskin J. S., Gunter T. E. Electron paramagnetic resonance of copper ion and manganese ion complexes with the ionophore A23187. Biochemistry. 1975 Jan 14;14(1):187–191. doi: 10.1021/bi00672a031. [DOI] [PubMed] [Google Scholar]
  29. Reed K. C., Bygrave F. L. A kinetic study of mitochondrial calcium transport. Eur J Biochem. 1975 Jul 15;55(3):497–504. doi: 10.1111/j.1432-1033.1975.tb02187.x. [DOI] [PubMed] [Google Scholar]
  30. Reed K. C., Bygrave F. L. Accumulation of lanthanum by rat liver mitochondria. Biochem J. 1974 Feb;138(2):239–252. doi: 10.1042/bj1380239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Reed K. C., Bygrave F. L. Methodology for in vitro studies of Ca-2+ transport. Anal Biochem. 1975 Jul;67(1):44–54. doi: 10.1016/0003-2697(75)90270-5. [DOI] [PubMed] [Google Scholar]
  32. Reed K. C., Bygrave F. L. The inhibition of mitochondrial calcium transport by lanthanides and ruthenium red. Biochem J. 1974 May;140(2):143–155. doi: 10.1042/bj1400143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Reed P. W., Lardy H. A. A23187: a divalent cation ionophore. J Biol Chem. 1972 Nov 10;247(21):6970–6977. [PubMed] [Google Scholar]
  34. Reynafarje B., Lehninger A. L. A quantitative analysis of super-stoichiometric H+ ejection and Ca 2+ uptake in respiring rat liver mitochondria. J Biol Chem. 1974 Oct 10;249(19):6067–6073. [PubMed] [Google Scholar]
  35. Reynafarje B., Lehninger A. L. The cause of superstoichiometric Ca2+ uptake and H+ ejection in L1210 mouse ascites tumor mitochondria. Biochem Biophys Res Commun. 1974 Mar 15;57(1):286–292. doi: 10.1016/s0006-291x(74)80388-8. [DOI] [PubMed] [Google Scholar]
  36. Rossi C., Azzi A., Azzone G. F. Ion transport in liver mitochondria. I. Metabolism-independent Ca++ binding and H+ release. J Biol Chem. 1967 Mar 10;242(5):951–957. [PubMed] [Google Scholar]
  37. Rossi C., Azzone G. F. H+/O ratio during ca2+ uptake in rat-liver mitochondria. Biochim Biophys Acta. 1965 Nov 22;110(2):434–436. doi: 10.1016/s0926-6593(65)80054-6. [DOI] [PubMed] [Google Scholar]
  38. Rottenberg H., Scarpa A. Calcium uptake and membrane potential in mitochondria. Biochemistry. 1974 Nov 5;13(23):4811–4817. doi: 10.1021/bi00720a020. [DOI] [PubMed] [Google Scholar]
  39. Rottenberg H. The measurement of transmembrane electrochemical proton gradients. J Bioenerg. 1975 May;7(2):61–74. doi: 10.1007/BF01558427. [DOI] [PubMed] [Google Scholar]
  40. Scarpa A., Azzone G. F. Ion transport in liver mitochondria. VI. The role of surface binding on aerobic Ca++translocation. J Biol Chem. 1968 Oct 10;243(19):5132–5138. [PubMed] [Google Scholar]
  41. Scarpa A., Azzone G. F. The mechanism of ion translocation in mitochondria. 4. Coupling of K+ efflux with Ca2+ uptake. Eur J Biochem. 1970 Feb;12(2):328–335. doi: 10.1111/j.1432-1033.1970.tb00854.x. [DOI] [PubMed] [Google Scholar]
  42. Scarpa A., Graziotti P. Mechanisms for intracellular calcium regulation in heart. I. Stopped-flow measurements of Ca++ uptake by cardiac mitochondria. J Gen Physiol. 1973 Dec;62(6):756–772. doi: 10.1085/jgp.62.6.756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Selwyn M. J., Dawson A. P., Dunnett S. J. Calcium transport in mitochondria. FEBS Lett. 1970 Sep 18;10(1):1–5. doi: 10.1016/0014-5793(70)80402-1. [DOI] [PubMed] [Google Scholar]
  44. Sordahl L. A. Effects of magnesium, Ruthenium red and the antibiotic ionophore A-23187 on initial rates of calcium uptake and release by heart mitochondria. Arch Biochem Biophys. 1975 Mar;167(1):104–115. doi: 10.1016/0003-9861(75)90446-4. [DOI] [PubMed] [Google Scholar]
  45. Spencer T., Bygrave F. L. The role of mitochondria in modifying the cellular ionic environment: studies of the kinetic accumulation of calcium by rat liver mitochondria. J Bioenerg. 1973 Apr;4(3):347–362. doi: 10.1007/BF01648977. [DOI] [PubMed] [Google Scholar]
  46. Stucki J. W., Ineichen E. A. Energy dissipation by calcium recycling and the efficiency of calcium transport in rat-liver mitochondria. Eur J Biochem. 1974 Oct 2;48(2):365–375. doi: 10.1111/j.1432-1033.1974.tb03778.x. [DOI] [PubMed] [Google Scholar]
  47. Vasington F. D., Gazzotti P., Tiozzo R., Carafoli E. The effect of ruthenium red on Ca 2+ transport and respiration in rat liver mitochondria. Biochim Biophys Acta. 1972 Jan 21;256(1):43–54. doi: 10.1016/0005-2728(72)90161-2. [DOI] [PubMed] [Google Scholar]
  48. Vinogradov A., Scarpa A. The initial velocities of calcium uptake by rat liver mitochondria. J Biol Chem. 1973 Aug 10;248(15):5527–5531. [PubMed] [Google Scholar]
  49. Wikström M., Ahonen P., Luukkainen T. The role of mitochondria in uterine contractions. FEBS Lett. 1975 Aug 1;56(1):120–123. doi: 10.1016/0014-5793(75)80124-4. [DOI] [PubMed] [Google Scholar]
  50. Wohlrab H. Respiration-linked calcium ion uptake by flight muscle mitochondria from the blowfly Sarcophaga bullata. Biochemistry. 1974 Sep 10;13(19):4014–4018. doi: 10.1021/bi00716a030. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES