Abstract
Experiments with rat liver homogenates showed that on subcellular fractionation the ability to catalyse the conversion of thyroxine into tri-iodothyronine was lost. The activity could in part be restored by addition of the cytosol to the microsomal fraction. Both components were found to be heat labile. The necessity of the presence of cytosol could be circumvented by incorporation of thiol-group-containing compounds in the medium. Optimal enzymic activity was observed in the presence of dithiothreitol and EDTA in medium of low osmolarity. By comparing the distribution of the converting enzyme over the subcellular fractions with a microsomal marker enzyme, glucose 6-phosphatase, it was demonstrated that the former is indeed of microsomal origin. Finally, it was shown that thiol groups play an essential role in the conversion of thyroxine into tri-iodothyronine.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- DE DUVE C., PRESSMAN B. C., GIANETTO R., WATTIAUX R., APPELMANS F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. 1955 Aug;60(4):604–617. doi: 10.1042/bj0600604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dawber N. A., Galton V. A., Ingbar S. H. Degradation of thyroxine by a thyroidal peroxidase. Endocrinology. 1971 Jan;88(1):144–148. doi: 10.1210/endo-88-1-144. [DOI] [PubMed] [Google Scholar]
- Docter R., Visser T. J., Stinis J. T., van den Hout-Goemaat N. L., Hennemann G. Binding of L-triiodothyronine to isolated rat liver and kidney nuclei under various circumstances. Acta Endocrinol (Copenh) 1976 Jan;81(1):82–95. doi: 10.1530/acta.0.0810082. [DOI] [PubMed] [Google Scholar]
- GALTON V. A., INGBAR S. H. ROLE OF PEROXIDASE AND CATALASE IN THE PHYSIOLOGICAL DEIODINATION OF THYROXINE. Endocrinology. 1963 Nov;73:596–605. doi: 10.1210/endo-73-5-596. [DOI] [PubMed] [Google Scholar]
- GROSS J., PITT-RIVERS R. The identification of 3:5:3'-L-triiodothyronine in human plasma. Lancet. 1952 Mar 1;1(6705):439–441. doi: 10.1016/s0140-6736(52)91952-1. [DOI] [PubMed] [Google Scholar]
- Haibach H. Evidence for a thyroxine deiodinating mechanism in the rat thyroid different from iodotyrosine deiodinase. Endocrinology. 1971 Apr;88(4):918–923. doi: 10.1210/endo-88-4-918. [DOI] [PubMed] [Google Scholar]
- Hesch R. D., Brunner G., Söling H. D. Conversion of thyroxine (T4) and triiodothyronine (T3) and the subcellular localisation of the converting enzyme. Clin Chim Acta. 1975 Mar 10;59(2):209–213. doi: 10.1016/0009-8981(75)90031-5. [DOI] [PubMed] [Google Scholar]
- Klebanoff S. J., Green W. L. Degradation of thyroid hormones by phagocytosing human leukocytes. J Clin Invest. 1973 Jan;52(1):60–72. doi: 10.1172/JCI107174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LARSON F. C., TOMITA K., ALBRIGHT E. C. The deiodination of thyroxine to triiodothyronine by kidney slices of rats with varying thyroid function. Endocrinology. 1955 Sep;57(3):338–344. doi: 10.1210/endo-57-3-338. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Nakagawa S., Ruegamer W. R. Properties of a rat tissue iodothyronine deiodinase and its natural inhibitor. Biochemistry. 1967 May;6(5):1249–1261. doi: 10.1021/bi00857a005. [DOI] [PubMed] [Google Scholar]
- Oppenheimer J. H., Schwartz H. L., Dillman W., Surks M. I. Effect of thyroid hormone analogues on the displacement of 125I-L-triiodothyronine from hepatic and heart nuclei in vivo: possible relationship to hormonal activity. Biochem Biophys Res Commun. 1973 Dec 10;55(3):544–550. doi: 10.1016/0006-291x(73)91177-7. [DOI] [PubMed] [Google Scholar]
- PITT-RIVERS R., STANBURY J. B., RAPP B. Conversion of thyroxine to 3-5-3'-triiodothyronine in vivo. J Clin Endocrinol Metab. 1955 May;15(5):616–620. doi: 10.1210/jcem-15-5-616. [DOI] [PubMed] [Google Scholar]
- Rabinowitz J. L., Hercker E. S. Thyroxine: convesion to triiodothyronine by isolated perfused rat heart. Science. 1971 Sep 24;173(4003):1242–1243. doi: 10.1126/science.173.4003.1242. [DOI] [PubMed] [Google Scholar]
- Rosenberg I. N., Ahn C. S. Enzymatic deiodination of diiodotyrosine; possible mediation by reduced flavin nucleotide. Endocrinology. 1969 Apr;84(4):727–737. doi: 10.1210/endo-84-4-727. [DOI] [PubMed] [Google Scholar]
- Samuels H. H., Tsai J. S. Thyroid hormone action in cell culture: domonstration of nuclear receptors in intact cells and isolated nuclei. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3488–3492. doi: 10.1073/pnas.70.12.3488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz H. L., Kozyreff V., Surks M. I., Oppenheimer J. H. Increased deiodination of L-thyroxine and L-triiodothyronine by liver microsomes from rats treated with phenobarbital. Nature. 1969 Mar 29;221(5187):1262–1263. doi: 10.1038/2211262a0. [DOI] [PubMed] [Google Scholar]
- Schwartz H. L., Surks M. I., Oppenheimer J. H. Quantitation of extrathyroidal conversion of L-thyroxine to 3,5,3'-triiodo-L-thyronine in the rat. J Clin Invest. 1971 May;50(5):1124–1130. doi: 10.1172/JCI106584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sterling K., Brenner M. A., Saldanha V. F. Conversion of thyroxine to triiodothyronine by cultured human cells. Science. 1973 Mar 9;179(4077):1000–1001. doi: 10.1126/science.179.4077.1000. [DOI] [PubMed] [Google Scholar]
- TATA J. R. The partial purification and properties of thyroxine dehalogenase. Biochem J. 1960 Nov;77:214–226. doi: 10.1042/bj0770214. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WYNN J., GIBBS R., ROYSTER B. Thyroxine degradation. I. Study of optimal reaction conditions of a rat liver thyroxine-degrading system. J Biol Chem. 1962 Jun;237:1892–1897. [PubMed] [Google Scholar]
- Woeber K. A., Ingbar S. H. Metabolism of L-thyroxine by phagocytosing human leukocytes. J Clin Invest. 1973 Aug;52(8):1796–1803. doi: 10.1172/JCI107361. [DOI] [PMC free article] [PubMed] [Google Scholar]
