Abstract
Non-histone proteins from rat liver nuclei and chromatin were shown to be hydrolysed in 0.1M or-1M-NaOH solutions both at 4 degrees and 18 degrees C; 24h in 1M-NaOH at 18 degrees C is sufficient to break down approx. 77% of these proteins to low-molecular-weight peptides. Loss of protein material banding in the region of pH5.5-8.0 has been demonstrated by isoelectric focusing in polyacrylamide gels, and fine high-molecular-weight bands are no longer visible on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The results indicate that care must be taken when analysing non-histone-protein fractions to avoid exposure to alkaline pH conditions.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- CHAUVEAU J., MOULE Y., ROUILLER C. Isolation of pure and unaltered liver nuclei morphology and biochemical composition. Exp Cell Res. 1956 Aug;11(2):317–321. doi: 10.1016/0014-4827(56)90107-0. [DOI] [PubMed] [Google Scholar]
- Elgin S. C., Bonner J. Limited heterogeneity of the major nonhistone chromosomal proteins. Biochemistry. 1970 Oct 27;9(22):4440–4447. doi: 10.1021/bi00824a027. [DOI] [PubMed] [Google Scholar]
- Gronow M., Griffiths G. Rapid isolation and separation of the non-histone proteins of rat liver nuclei. FEBS Lett. 1971 Jul 8;15(5):340–344. doi: 10.1016/0014-5793(71)80329-0. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- MacGillivray A. J., Cameron A., Krauze R. J., Rickwood D., Paul J. The non-histone proteins of chromatin, their isolation and composition in a number of tissues. Biochim Biophys Acta. 1972 Aug 25;277(2):384–402. [PubMed] [Google Scholar]
- Matsuyama A., Tagashira Y., Nagata C. A circular dichroism study on the conformation of DNA in rat liver chromatin. Biochim Biophys Acta. 1971 Jun 30;240(2):184–190. doi: 10.1016/0005-2787(71)90656-3. [DOI] [PubMed] [Google Scholar]
- Murphy R. F., Bonner J. Alkaline extraction of non-histone proteins from rat liver chromatin. Biochim Biophys Acta. 1975 Sep 9;405(1):62–66. doi: 10.1016/0005-2795(75)90314-1. [DOI] [PubMed] [Google Scholar]
- Oba Y., Hayashi M. Alkaline denaturation of nucleohistone. Eur J Biochem. 1972 Sep 25;29(3):461–468. doi: 10.1111/j.1432-1033.1972.tb02010.x. [DOI] [PubMed] [Google Scholar]
- Ramm E. I., Vorob'ev V. I., Birshtein T. M., Bolotina I. A., Volkenshtein M. V. Circular dichroism of DNA and histones in the free state and in deoxyribonucleoprotein. Eur J Biochem. 1972 Feb 15;25(2):245–253. doi: 10.1111/j.1432-1033.1972.tb01690.x. [DOI] [PubMed] [Google Scholar]
- Russev G., Anachkova B., Tsanev R. Fractionation of rat-liver-chromatin nonhistone proteins into two groups with different metabolic rates. Eur J Biochem. 1975 Oct 15;58(2):253–257. doi: 10.1111/j.1432-1033.1975.tb02370.x. [DOI] [PubMed] [Google Scholar]
- Russev G., Venkov C., Tsanev R. Stepwise dissociation of histones from rat-liver chromatin in alkaline solutions. Eur J Biochem. 1974 Apr 1;43(2):253–256. doi: 10.1111/j.1432-1033.1974.tb03407.x. [DOI] [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]


