Abstract
The initial-velocity kinetics of hog kidney gamma-glutamyltransferase were studied. Glutamate gamma-(4-nitroanilide) and its 3-carboxy derivative, glutamate gamma-(3-carboxy-4-nitroanilide), served as gamma-glutamyl donors, and glycylglycine as an acceptor. Reaction products were identified by paper chromatography and amino acid analysis. Inhibited Ping Pong mechanisms and a comprehensive initial- velocity expression were developed which account for the observed simultaneous gamma-glutamyl transfer and autotransfer, competitive inhibition by glycylglycine, and non-competitive inhibition by the carboxy donor. The validity of the proposed Ping Pong mechanisms are supported by enzyme-velocity data obtained with constant ratios of acceptor to donor concentrations. Kinetic constants were determined by a non-linear regression analysis. With glutamate gamma-(4-nitroanilide) as the donor, Michaelis constants for the donor, acceptor and donor-acting-as-acceptor are 1.87, 24.9, and 2.08 mM respectively. With glutamate gamma-(3-carboxy-4-nitroanilide) as the donor, these Michaelis constants are 1.63, 16.6, and 12.3 mM. Glyclyglycine competitive inhibition constants with the parent donor and its carboxy derivative are 275 and 205 mM respectively; the non-competitive inhibition constant of the carboxy donor is 34 mM.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALBERT Z., ORLOWSKI M., SZEWCZUK A. Histochemical demonstration of gamma-glutamyl transpeptidase. Nature. 1961 Aug 19;191:767–768. doi: 10.1038/191767a0. [DOI] [PubMed] [Google Scholar]
- CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim Biophys Acta. 1963 Jan 8;67:104–137. doi: 10.1016/0006-3002(63)91800-6. [DOI] [PubMed] [Google Scholar]
- Elce J. S., Broxmeyer B. Gamma-glutamyltransferase of rat kidney. Simultaneous assay of the hydrolysis and transfer reactions with (glutamate-14C)glutathione. Biochem J. 1976 Feb 1;153(2):223–232. doi: 10.1042/bj1530223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elce J. S., Bryson J., McGirr L. G. Gamma-glutamyl transpeptidase of rat kidney. Some properties and kinetic constants. Can J Biochem. 1974 Jan;52(1):33–41. doi: 10.1139/o74-007. [DOI] [PubMed] [Google Scholar]
- Johnson L. E. Computers, models, and optimization in physiological kinetics. CRC Crit Rev Bioeng. 1974 Feb;2(1):1–37. [PubMed] [Google Scholar]
- Lum G., Gambino S. R. Serum gamma-glutamyl transpeptidase activity as an indicator of disease of liver, pancreas, or bone. Clin Chem. 1972 Apr;18(4):358–362. [PubMed] [Google Scholar]
- Meister A. On the enzymology of amino acid transport. Science. 1973 Apr 6;180(4081):33–39. doi: 10.1126/science.180.4081.33. [DOI] [PubMed] [Google Scholar]
- ORLOWSKI M., MEISTER A. GAMMA-GLUTAMYL-P-NITROANILIDE: A NEW CONVENIENT SUBSTRATE FOR DETERMINATION AND STUDY OF L- AND D-GAMMA-GLUTAMYLTRANSPEPTIDASE ACTIVITIES. Biochim Biophys Acta. 1963 Aug 6;73:679–681. doi: 10.1016/0006-3002(63)90348-2. [DOI] [PubMed] [Google Scholar]
- ORLOWSKI M., MEISTER A. ISOLATION OF GAMMA-GLUTAMYL TRANSPEPTIDASE FROM HOG KIDNEY. J Biol Chem. 1965 Jan;240:338–347. [PubMed] [Google Scholar]
- Rhoads D. G., Pring M. The simulation and analysis by digital computer of biochemical systems in terms of kinetic models. IV. Automatic derivation of enzymic rate laws. J Theor Biol. 1968 Sep;20(3):297–313. doi: 10.1016/0022-5193(68)90130-6. [DOI] [PubMed] [Google Scholar]
- Tate S. S., Meister A. Interaction of gamma-glutamyl transpeptidase with amino acids, dipeptides, and derivatives and analogs of glutathione. J Biol Chem. 1974 Dec 10;249(23):7593–7602. [PubMed] [Google Scholar]

