Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1976 Sep 1;157(3):745–751. doi: 10.1042/bj1570745

A trypsin and chymotrypsin inhibitor from chick peas (Cicer arietinum).

P Smirnoff, S Khalef, Y Birk, S W Applebaum
PMCID: PMC1163917  PMID: 791269

Abstract

1. A trypsin and chymotrypsin inhibitor was isolated by extraction of chick-pea meal at pH8.3, followed by (NH4)2SO4 precipitation and successive column chromatography on CM-cellulose and calcium phosphate (hydroxyapatite). 2. The inhibitor was pure by polyacrylamide-gel and cellulose acetate electrophoresis and by isoelectric focusing in polyacrylamide gels. 3. The inhibitor had a molecular weight of approx. 10000 as determined by ultracentrifugation and by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate. A molecular weight of 8300 was resolved from its amino acid composition. 4. The inhibitor formed complexes with trypsin and chymotrypsin at molar ratios of 1:1. 5. Limited proteolysis of the inhibitor with trypsin at pH3.75 resulted in hydrolysis of a single-Lys-X-bond and in consequent loss of 85% of the trypsin inhibitory activity and 60% of the chymotrypsin inhibitory activity. Limited proteolysis of the inhibitor with chymotrypsin at pH3.75 resulted in hydrolysis of a single-Tyr-X-bond and in consequent loss of 70% of the trypsin inhibitory activity and in complete loss of the chymotrypsin inhibitory activity. 6. Cleavage of the inhibitor with CNBr followed by pepsin and consequent separation of the products on a Bio Gel P-10 column, yielded two active fragments, A and B. Fragment A inhibited trypsin but not chymotrypsin, and fragment B inhibited chymotrypsin but not trypsin. The specific trypsin inhibitory activity, on a molar ratio, of fragment A was twice that of the native inhibitor, suggesting the unmasking of another trypsin inhibitory site as a result of the cleavage. On the other hand, the specific chymotrypsin inhibitory activity of fragment B was about one-half of that of the native inhibitor, indicating the occurrence of a possible conformational change.

Full text

PDF
745

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BIRK Y., GERTLER A., KHALEF S. A pure trypsin inhibitor from soya beans. Biochem J. 1963 May;87:281–284. doi: 10.1042/bj0870281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Birk Y. Chemistry and nutritional significance of proteinase inhibitors from plant sources. Ann N Y Acad Sci. 1968 Jun 28;146(2):388–399. doi: 10.1111/j.1749-6632.1968.tb20299.x. [DOI] [PubMed] [Google Scholar]
  3. Birk Y., Gertler A., Khalef S. Further evidence for a dual, independent, activity against trypsin and alpha-chymotrypsin of inhibitor AA from soybeans. Biochim Biophys Acta. 1967 Oct 23;147(2):402–404. doi: 10.1016/0005-2795(67)90424-2. [DOI] [PubMed] [Google Scholar]
  4. Butler P. J., Harris J. I., Hartley B. S., Lebeman R. The use of maleic anhydride for the reversible blocking of amino groups in polypeptide chains. Biochem J. 1969 May;112(5):679–689. doi: 10.1042/bj1120679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chernikov M. P., Abramova E. P., Liaiman M. E., Chernikova L. G., Shuliak A. I., Chebotarev A. K. Ingibitory proteinaz semian nekotorykh rastenii, ikh svoistva i vliianie na usvoenie belka. Vestn Akad Med Nauk SSSR. 1966;21(10):57–64. [PubMed] [Google Scholar]
  6. FRAENKEL-CONRAT H., HARRIS J. I., LEVY A. L. Recent developments in techniques for terminal and sequence studies in peptides and proteins. Methods Biochem Anal. 1955;2:359–425. doi: 10.1002/9780470110188.ch12. [DOI] [PubMed] [Google Scholar]
  7. Gertler A., Birk Y., Bondi A. A comparative study of the nutritional and physiological significance of pure soybean trypsin inhibitors and of ethanol-extracted soybean meals in chicks and rats. J Nutr. 1967 Mar;91(3):358–370. doi: 10.1093/jn/91.3_Suppl.358. [DOI] [PubMed] [Google Scholar]
  8. HJERTEN S., LEVIN O., TISELIUS A. Protein chromatography on calcium phosphate columns. Arch Biochem Biophys. 1956 Nov;65(1):132–155. doi: 10.1016/0003-9861(56)90183-7. [DOI] [PubMed] [Google Scholar]
  9. Konijn A. M., Biek Y., Guggenheim K. Pancreatic enzyme pattern in rats as affected by dietary soybean flour. J Nutr. 1970 Mar;100(3):361–368. doi: 10.1093/jn/100.3.361. [DOI] [PubMed] [Google Scholar]
  10. Konijn A. M., Birk Y., Guggenheim K. In vitro synthesis of pancreatic enzymes: effect of soybean trypsin inhibitor. Am J Physiol. 1970 Apr;218(4):1113–1117. doi: 10.1152/ajplegacy.1970.218.4.1113. [DOI] [PubMed] [Google Scholar]
  11. Krahn J., Stevens F. C. Lima bean trypsin inhibitor. Limited proteolysis by trypsin and chymotrypsin. Biochemistry. 1970 Jun 23;9(13):2646–2652. doi: 10.1021/bi00815a013. [DOI] [PubMed] [Google Scholar]
  12. LASKOWSKI M., LASKOWSKI M., Jr Naturally occurring trypsin inhibitors. Adv Protein Chem. 1954;9:203–242. doi: 10.1016/s0065-3233(08)60207-7. [DOI] [PubMed] [Google Scholar]
  13. Levinsky H., Smirnoff P., Khalef S., Birk Y., Applebaum S. W. Proceedings: Trypsin-like enzymes and trypsin inhibitors. Isr J Med Sci. 1975 Nov;11(11):1170–1170. [PubMed] [Google Scholar]
  14. Madar Z., Birk Y., Gertler A. Native and modified Bowman-Birk trypsin inhibitor--comparative effect on pancreatic enzymes upon ingestion by quails (Coturnix coturnix japonica). Comp Biochem Physiol B. 1974 Jun 15;48(2):251–256. doi: 10.1016/0305-0491(74)90201-6. [DOI] [PubMed] [Google Scholar]
  15. Matsubara H., Sasaki R. M. High recovery of tryptophan from acid hydrolysates of proteins. Biochem Biophys Res Commun. 1969 Apr 29;35(2):175–181. doi: 10.1016/0006-291x(69)90263-0. [DOI] [PubMed] [Google Scholar]
  16. Odani S., Ikenaka T. Scission of soybean Bowman-Birk proteinase inhibitor into two small fragments having either trypsin or chymotrypsin inhibitory activity. J Biochem. 1973 Oct;74(4):857–860. doi: 10.1093/oxfordjournals.jbchem.a130313. [DOI] [PubMed] [Google Scholar]
  17. Ozawa K., Laskowski M., Jr The reactive site of trypsin inhibitors. J Biol Chem. 1966 Sep 10;241(17):3955–3961. [PubMed] [Google Scholar]
  18. Porter R. R., Sanger F. The free amino groups of haemoglobins. Biochem J. 1948;42(2):287–294. doi: 10.1042/bj0420287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pusztai A. Trypsin inhibitors of plant origin, their chemistry and potential role in animal nutrition. Nutr Abstr Rev. 1967 Jan;37(1):1–9. [PubMed] [Google Scholar]
  20. REISFELD R. A., LEWIS U. J., WILLIAMS D. E. Disk electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature. 1962 Jul 21;195:281–283. doi: 10.1038/195281a0. [DOI] [PubMed] [Google Scholar]
  21. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  22. YPHANSTIS D. A. Rapid determination of molecular weights of peptides and preteins. Ann N Y Acad Sci. 1960 Aug 31;88:586–601. doi: 10.1111/j.1749-6632.1960.tb20055.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES