Abstract
Ehrlich ascites-tumour cells accumulate Ca2+ when incubated aerobically with succinate, phosphate and rotenone, as revealed by isotopic and atomic-absorption measurements. Ca2+ does not stimulate oxygen consumption by carefully prepared Ehrlich cells, but des so when the cells are placed in a hypo-osmotic medium. Neither glutamate nor malate support Ca2+ uptake in 'intact' Ehrlich cells, nor does the endogenous NAD-linked respiration. Ca2+ uptake is completely dependent on mitochondrial energy-coupling mechansims. It was an unexpected finding that maximal Ca2+ uptake supported by succinate requires rotenone, which blocks oxidation of enogenous NAD-linked substrates. Phosphate functions as co-anion for entry of Ca2+. Ca2+ uptake is also supported by extra-cellular ATP; no other nucleoside 5'-di- or tri-phosphate was active. The accumulation of Ca2+ apparently takes place in the mitochondria, since oligomycin and atractyloside inhibit ATP-supported Ca2+ uptake. Glycolysis does not support Ca2+ uptake. Neither free mitochondria released from disrupted cells nor permeability-damaged cells capable of absorbing Trypan Blue were responsible for any large fraction of the total observed energy-coupled Ca2+ uptake. The observations reported also indicate that electron flow through energy-conserving site 1 promotes Ca2+ release from Ehrlich cells and that extra-cellular ATP increase permeability of the cell membrane, allowing both ATP and Ca2+ to enter the cells more readily.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agren G., Ronquist G. Formation of extracellular adenosine triphosphate by tumour cells. Acta Physiol Scand. 1969 Jan-Feb;75(1):124–128. doi: 10.1111/j.1748-1716.1969.tb04363.x. [DOI] [PubMed] [Google Scholar]
- Borle A. B. Calcium metabolism at the cellular level. Fed Proc. 1973 Sep;32(9):1944–1950. [PubMed] [Google Scholar]
- Borle A. B. Kinetic analysis of calcium movements in cell culture. V. Intracellular calcium distribution in kidney cells. J Membr Biol. 1972;10(1):45–66. doi: 10.1007/BF01867847. [DOI] [PubMed] [Google Scholar]
- Bygrave F. L. The effect of calcium ions on the glycolytic activity of Ehrlich ascites-tumour cells. Biochem J. 1966 Nov;101(2):480–487. doi: 10.1042/bj1010480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CHANCE B. THE ENERGY-LINKED REACTION OF CALCIUM WITH MITOCHONDRIA. J Biol Chem. 1965 Jun;240:2729–2748. [PubMed] [Google Scholar]
- Chudapongse P., Haugaard N. The effect of phosphoenolpyruvate on calcium transport by mitochondria. Biochim Biophys Acta. 1973 May 25;307(3):599–606. doi: 10.1016/0005-2736(73)90304-0. [DOI] [PubMed] [Google Scholar]
- Cittadini A., Scarpa A., Chance B. Calcium transport in intact Ehrlich ascites tumor cells. Biochim Biophys Acta. 1973 Jan 2;291(1):246–259. doi: 10.1016/0005-2736(73)90416-1. [DOI] [PubMed] [Google Scholar]
- Dahlquist R. Determination of ATP-induced 45calcium uptake in rat mast cells. Acta Pharmacol Toxicol (Copenh) 1974 Jul;35(1):1–10. doi: 10.1111/j.1600-0773.1974.tb00719.x. [DOI] [PubMed] [Google Scholar]
- Dubinsky W. P., Cockrell R. S. Ca2+ transport across plasma and mitochondrial membranes of isolated hepatocytes. FEBS Lett. 1975 Nov 1;59(1):39–43. doi: 10.1016/0014-5793(75)80336-x. [DOI] [PubMed] [Google Scholar]
- Gevers W., Krebs H. A. The effects of adenine nucleotides on carbohydrate metabolism in pigeon-liver homogenates. Biochem J. 1966 Mar;98(3):720–735. doi: 10.1042/bj0980720. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gochman N., Givelber H. Automated, simultaneous microdetermination of calcium and magnesium by atomic absorption. Clin Chem. 1970 Mar;16(3):229–234. [PubMed] [Google Scholar]
- Howard R. B., Lee J. C., Pesch L. A. The fine structure, potassium content, and respiratory activity of isolated rat liver parenchymal cells prepared by improved enzymatic techniques. J Cell Biol. 1973 Jun;57(3):642–658. doi: 10.1083/jcb.57.3.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kleineke J., Stratman F. W. Calcium transport in isolated rat hepatocytes. FEBS Lett. 1974 Jul 1;43(1):75–80. doi: 10.1016/0014-5793(74)81109-9. [DOI] [PubMed] [Google Scholar]
- Krüger P. G., Diamant B., Dahlquist R. Morphological changes induced by ATP on rat mast cells and their relationship to histamine release. Int Arch Allergy Appl Immunol. 1974;46(5):676–688. doi: 10.1159/000231168. [DOI] [PubMed] [Google Scholar]
- Lehninger A. L., Carafoli E., Rossi C. S. Energy-linked ion movements in mitochondrial systems. Adv Enzymol Relat Areas Mol Biol. 1967;29:259–320. doi: 10.1002/9780470122747.ch6. [DOI] [PubMed] [Google Scholar]
- Lehninger A. L. Mitochondria and calcium ion transport. Biochem J. 1970 Sep;119(2):129–138. doi: 10.1042/bj1190129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lehninger A. L. Role of phosphate and other proton-donating anions in respiration-coupled transport of Ca2+ by mitochondria. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1520–1524. doi: 10.1073/pnas.71.4.1520. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levinson C., Blumenson L. E. Calcium transport and distribution in Ehrlich mouse ascites tumor cells. J Cell Physiol. 1970 Apr;75(2):231–240. doi: 10.1002/jcp.1040750212. [DOI] [PubMed] [Google Scholar]
- Mapes J. P., Harris R. A. On the oxidation of succinate by parenchymal cells isolated from rat liver. FEBS Lett. 1975 Mar 1;51(1):80–83. doi: 10.1016/0014-5793(75)80858-1. [DOI] [PubMed] [Google Scholar]
- Martin B. R., Clausen T., Gliemann J. Relationships between the exchange of calcium and phosphate in isolated fat-cells. Biochem J. 1975 Oct;152(1):121–129. doi: 10.1042/bj1520121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McIntyre H. J., Bygrave F. L. Retention of calcium by mitochondria isolated from Ehrlich ascites tumor cells. Arch Biochem Biophys. 1974 Dec;165(2):744–748. doi: 10.1016/0003-9861(74)90303-8. [DOI] [PubMed] [Google Scholar]
- Moore C. L. Specific inhibition of mitochondrial Ca++ transport by ruthenium red. Biochem Biophys Res Commun. 1971 Jan 22;42(2):298–305. doi: 10.1016/0006-291x(71)90102-1. [DOI] [PubMed] [Google Scholar]
- ROSSI C. S., LEHNINGER A. L. STOICHIOMETRIC RELATIONSHIPS BETWEEN ACCUMULATION OF IONS BY MITOCHONDRIA AND THE ENERGY-COUPLING SITES IN THE RESPIRATORY CHAIN. Biochem Z. 1963;338:698–713. [PubMed] [Google Scholar]
- ROSSI C. S., LEHNINGER A. L. STOICHIOMETRY OF RESPIRATORY STIMULATION, ACCUMULATION OF CA++ AND PHOSPHATE, AND OXIDATIVE PHOSPHORYLATION IN RAT LIVER MITOCHONDRIA. J Biol Chem. 1964 Nov;239:3971–3980. [PubMed] [Google Scholar]
- Rasmussen H. Cell communication, calcium ion, and cyclic adenosine monophosphate. Science. 1970 Oct 23;170(3956):404–412. doi: 10.1126/science.170.3956.404. [DOI] [PubMed] [Google Scholar]
- Reynafarje B., Lehninger A. L. Ca2+ transport by mitochondria from L1210 mouse ascites tumor cells. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1744–1748. doi: 10.1073/pnas.70.6.1744. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ronquist G., Agren G. K. A Mg2+- and Ca2+-stimulated adenosine triphosphatase at the outer surface of Ehrlich ascites tumor cells. Cancer Res. 1975 Jun;35(6):1402–1406. [PubMed] [Google Scholar]
- Rose B., Loewenstein W. R. Permeability of cell junction depends on local cytoplasmic calcium activity. Nature. 1975 Mar 20;254(5497):250–252. doi: 10.1038/254250a0. [DOI] [PubMed] [Google Scholar]
- Rozengurt E., Heppel L. A. A Specific effect of external ATP on the permeability of transformed 3T3 cells. Biochem Biophys Res Commun. 1975 Dec 15;67(4):1581–1588. doi: 10.1016/0006-291x(75)90207-7. [DOI] [PubMed] [Google Scholar]
- THOMASON D., SCHOFIELD R. Calcium exchanges between cells and environment. I. Ehrlich ascites tumour cells of mice, in vivo. Exp Cell Res. 1959 Feb;16(2):324–334. doi: 10.1016/0014-4827(59)90260-5. [DOI] [PubMed] [Google Scholar]
- Thorne R. F., Bygrave F. L. Calcium does not uncouple oxidative phosphorylation in tightly-coupled mitochondria from Ehrlich ascites tumour cells. Nature. 1974 Mar 22;248(446):348–351. doi: 10.1038/248348a0. [DOI] [PubMed] [Google Scholar]
- Thorne R. F., Bygrave F. L. Energy-linked functions of tightly coupled mitochondria isolated from Ehrlich ascites tumor cells. Cancer Res. 1973 Nov;33(11):2562–2567. [PubMed] [Google Scholar]
- Thorne R. F., Bygrave F. L. Inhibition by calcium of adenine nucleotide translocation in mitochondria isolated from Ehrlich ascites tumour cells. FEBS Lett. 1974 Apr 15;41(1):118–121. doi: 10.1016/0014-5793(74)80968-3. [DOI] [PubMed] [Google Scholar]
- Thorne R. F., Bygrave F. L. Interaction of calcium with mitochondria isolated from Ehrlich ascites tumour cells. Biochem Biophys Res Commun. 1973 Jan 23;50(2):294–299. doi: 10.1016/0006-291x(73)90839-5. [DOI] [PubMed] [Google Scholar]
- Thorne R. F., Bygrave F. L. The role of mitochondria in modifying the cellular ionic environment. Calcium-induced respiratory activities in mitochondria isolated from various tumour cells. Biochem J. 1974 Dec;144(3):551–558. doi: 10.1042/bj1440551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Rossum G. D. The oxidation of succinate and permeability of dicarboxylate anions in rat-liver slices. Arch Biochem Biophys. 1969 Sep;133(2):373–384. doi: 10.1016/0003-9861(69)90466-4. [DOI] [PubMed] [Google Scholar]