Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1976 Aug 15;158(2):427–438. doi: 10.1042/bj1580427

Transport of calcium ions by Ehrlich ascites-tumour cells.

Y Landry, A L Lehninger
PMCID: PMC1163986  PMID: 988829

Abstract

Ehrlich ascites-tumour cells accumulate Ca2+ when incubated aerobically with succinate, phosphate and rotenone, as revealed by isotopic and atomic-absorption measurements. Ca2+ does not stimulate oxygen consumption by carefully prepared Ehrlich cells, but des so when the cells are placed in a hypo-osmotic medium. Neither glutamate nor malate support Ca2+ uptake in 'intact' Ehrlich cells, nor does the endogenous NAD-linked respiration. Ca2+ uptake is completely dependent on mitochondrial energy-coupling mechansims. It was an unexpected finding that maximal Ca2+ uptake supported by succinate requires rotenone, which blocks oxidation of enogenous NAD-linked substrates. Phosphate functions as co-anion for entry of Ca2+. Ca2+ uptake is also supported by extra-cellular ATP; no other nucleoside 5'-di- or tri-phosphate was active. The accumulation of Ca2+ apparently takes place in the mitochondria, since oligomycin and atractyloside inhibit ATP-supported Ca2+ uptake. Glycolysis does not support Ca2+ uptake. Neither free mitochondria released from disrupted cells nor permeability-damaged cells capable of absorbing Trypan Blue were responsible for any large fraction of the total observed energy-coupled Ca2+ uptake. The observations reported also indicate that electron flow through energy-conserving site 1 promotes Ca2+ release from Ehrlich cells and that extra-cellular ATP increase permeability of the cell membrane, allowing both ATP and Ca2+ to enter the cells more readily.

Full text

PDF
427

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agren G., Ronquist G. Formation of extracellular adenosine triphosphate by tumour cells. Acta Physiol Scand. 1969 Jan-Feb;75(1):124–128. doi: 10.1111/j.1748-1716.1969.tb04363.x. [DOI] [PubMed] [Google Scholar]
  2. Borle A. B. Calcium metabolism at the cellular level. Fed Proc. 1973 Sep;32(9):1944–1950. [PubMed] [Google Scholar]
  3. Borle A. B. Kinetic analysis of calcium movements in cell culture. V. Intracellular calcium distribution in kidney cells. J Membr Biol. 1972;10(1):45–66. doi: 10.1007/BF01867847. [DOI] [PubMed] [Google Scholar]
  4. Bygrave F. L. The effect of calcium ions on the glycolytic activity of Ehrlich ascites-tumour cells. Biochem J. 1966 Nov;101(2):480–487. doi: 10.1042/bj1010480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CHANCE B. THE ENERGY-LINKED REACTION OF CALCIUM WITH MITOCHONDRIA. J Biol Chem. 1965 Jun;240:2729–2748. [PubMed] [Google Scholar]
  6. Chudapongse P., Haugaard N. The effect of phosphoenolpyruvate on calcium transport by mitochondria. Biochim Biophys Acta. 1973 May 25;307(3):599–606. doi: 10.1016/0005-2736(73)90304-0. [DOI] [PubMed] [Google Scholar]
  7. Cittadini A., Scarpa A., Chance B. Calcium transport in intact Ehrlich ascites tumor cells. Biochim Biophys Acta. 1973 Jan 2;291(1):246–259. doi: 10.1016/0005-2736(73)90416-1. [DOI] [PubMed] [Google Scholar]
  8. Dahlquist R. Determination of ATP-induced 45calcium uptake in rat mast cells. Acta Pharmacol Toxicol (Copenh) 1974 Jul;35(1):1–10. doi: 10.1111/j.1600-0773.1974.tb00719.x. [DOI] [PubMed] [Google Scholar]
  9. Dubinsky W. P., Cockrell R. S. Ca2+ transport across plasma and mitochondrial membranes of isolated hepatocytes. FEBS Lett. 1975 Nov 1;59(1):39–43. doi: 10.1016/0014-5793(75)80336-x. [DOI] [PubMed] [Google Scholar]
  10. Gevers W., Krebs H. A. The effects of adenine nucleotides on carbohydrate metabolism in pigeon-liver homogenates. Biochem J. 1966 Mar;98(3):720–735. doi: 10.1042/bj0980720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gochman N., Givelber H. Automated, simultaneous microdetermination of calcium and magnesium by atomic absorption. Clin Chem. 1970 Mar;16(3):229–234. [PubMed] [Google Scholar]
  12. Howard R. B., Lee J. C., Pesch L. A. The fine structure, potassium content, and respiratory activity of isolated rat liver parenchymal cells prepared by improved enzymatic techniques. J Cell Biol. 1973 Jun;57(3):642–658. doi: 10.1083/jcb.57.3.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kleineke J., Stratman F. W. Calcium transport in isolated rat hepatocytes. FEBS Lett. 1974 Jul 1;43(1):75–80. doi: 10.1016/0014-5793(74)81109-9. [DOI] [PubMed] [Google Scholar]
  14. Krüger P. G., Diamant B., Dahlquist R. Morphological changes induced by ATP on rat mast cells and their relationship to histamine release. Int Arch Allergy Appl Immunol. 1974;46(5):676–688. doi: 10.1159/000231168. [DOI] [PubMed] [Google Scholar]
  15. Lehninger A. L., Carafoli E., Rossi C. S. Energy-linked ion movements in mitochondrial systems. Adv Enzymol Relat Areas Mol Biol. 1967;29:259–320. doi: 10.1002/9780470122747.ch6. [DOI] [PubMed] [Google Scholar]
  16. Lehninger A. L. Mitochondria and calcium ion transport. Biochem J. 1970 Sep;119(2):129–138. doi: 10.1042/bj1190129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lehninger A. L. Role of phosphate and other proton-donating anions in respiration-coupled transport of Ca2+ by mitochondria. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1520–1524. doi: 10.1073/pnas.71.4.1520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Levinson C., Blumenson L. E. Calcium transport and distribution in Ehrlich mouse ascites tumor cells. J Cell Physiol. 1970 Apr;75(2):231–240. doi: 10.1002/jcp.1040750212. [DOI] [PubMed] [Google Scholar]
  19. Mapes J. P., Harris R. A. On the oxidation of succinate by parenchymal cells isolated from rat liver. FEBS Lett. 1975 Mar 1;51(1):80–83. doi: 10.1016/0014-5793(75)80858-1. [DOI] [PubMed] [Google Scholar]
  20. Martin B. R., Clausen T., Gliemann J. Relationships between the exchange of calcium and phosphate in isolated fat-cells. Biochem J. 1975 Oct;152(1):121–129. doi: 10.1042/bj1520121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McIntyre H. J., Bygrave F. L. Retention of calcium by mitochondria isolated from Ehrlich ascites tumor cells. Arch Biochem Biophys. 1974 Dec;165(2):744–748. doi: 10.1016/0003-9861(74)90303-8. [DOI] [PubMed] [Google Scholar]
  22. Moore C. L. Specific inhibition of mitochondrial Ca++ transport by ruthenium red. Biochem Biophys Res Commun. 1971 Jan 22;42(2):298–305. doi: 10.1016/0006-291x(71)90102-1. [DOI] [PubMed] [Google Scholar]
  23. ROSSI C. S., LEHNINGER A. L. STOICHIOMETRIC RELATIONSHIPS BETWEEN ACCUMULATION OF IONS BY MITOCHONDRIA AND THE ENERGY-COUPLING SITES IN THE RESPIRATORY CHAIN. Biochem Z. 1963;338:698–713. [PubMed] [Google Scholar]
  24. ROSSI C. S., LEHNINGER A. L. STOICHIOMETRY OF RESPIRATORY STIMULATION, ACCUMULATION OF CA++ AND PHOSPHATE, AND OXIDATIVE PHOSPHORYLATION IN RAT LIVER MITOCHONDRIA. J Biol Chem. 1964 Nov;239:3971–3980. [PubMed] [Google Scholar]
  25. Rasmussen H. Cell communication, calcium ion, and cyclic adenosine monophosphate. Science. 1970 Oct 23;170(3956):404–412. doi: 10.1126/science.170.3956.404. [DOI] [PubMed] [Google Scholar]
  26. Reynafarje B., Lehninger A. L. Ca2+ transport by mitochondria from L1210 mouse ascites tumor cells. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1744–1748. doi: 10.1073/pnas.70.6.1744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ronquist G., Agren G. K. A Mg2+- and Ca2+-stimulated adenosine triphosphatase at the outer surface of Ehrlich ascites tumor cells. Cancer Res. 1975 Jun;35(6):1402–1406. [PubMed] [Google Scholar]
  28. Rose B., Loewenstein W. R. Permeability of cell junction depends on local cytoplasmic calcium activity. Nature. 1975 Mar 20;254(5497):250–252. doi: 10.1038/254250a0. [DOI] [PubMed] [Google Scholar]
  29. Rozengurt E., Heppel L. A. A Specific effect of external ATP on the permeability of transformed 3T3 cells. Biochem Biophys Res Commun. 1975 Dec 15;67(4):1581–1588. doi: 10.1016/0006-291x(75)90207-7. [DOI] [PubMed] [Google Scholar]
  30. THOMASON D., SCHOFIELD R. Calcium exchanges between cells and environment. I. Ehrlich ascites tumour cells of mice, in vivo. Exp Cell Res. 1959 Feb;16(2):324–334. doi: 10.1016/0014-4827(59)90260-5. [DOI] [PubMed] [Google Scholar]
  31. Thorne R. F., Bygrave F. L. Calcium does not uncouple oxidative phosphorylation in tightly-coupled mitochondria from Ehrlich ascites tumour cells. Nature. 1974 Mar 22;248(446):348–351. doi: 10.1038/248348a0. [DOI] [PubMed] [Google Scholar]
  32. Thorne R. F., Bygrave F. L. Energy-linked functions of tightly coupled mitochondria isolated from Ehrlich ascites tumor cells. Cancer Res. 1973 Nov;33(11):2562–2567. [PubMed] [Google Scholar]
  33. Thorne R. F., Bygrave F. L. Inhibition by calcium of adenine nucleotide translocation in mitochondria isolated from Ehrlich ascites tumour cells. FEBS Lett. 1974 Apr 15;41(1):118–121. doi: 10.1016/0014-5793(74)80968-3. [DOI] [PubMed] [Google Scholar]
  34. Thorne R. F., Bygrave F. L. Interaction of calcium with mitochondria isolated from Ehrlich ascites tumour cells. Biochem Biophys Res Commun. 1973 Jan 23;50(2):294–299. doi: 10.1016/0006-291x(73)90839-5. [DOI] [PubMed] [Google Scholar]
  35. Thorne R. F., Bygrave F. L. The role of mitochondria in modifying the cellular ionic environment. Calcium-induced respiratory activities in mitochondria isolated from various tumour cells. Biochem J. 1974 Dec;144(3):551–558. doi: 10.1042/bj1440551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Van Rossum G. D. The oxidation of succinate and permeability of dicarboxylate anions in rat-liver slices. Arch Biochem Biophys. 1969 Sep;133(2):373–384. doi: 10.1016/0003-9861(69)90466-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES