Abstract
In inbred Mus musculus several different beta chains are known. In certain strains two beta chains are produced in unequal amounts by the two closely linked genes of the doublet breeding unit allele Hbb(d): Betadmaj and betadmin. One strain has a variant doublet allele, Hbb(p), which produces a variant minor beta chain, betapmin (the major beta chain, betapmaj, may not differ from betadmaj chain). Certain other strains have a singlet allele, Hbb(s), that produces only one beta chain, betas. Other species have different beta-chain patterns. In M. cervicolor two variant major beta chains are found, betacmaj (d-like) and betacmaj (s-like), both of which were found associated with minor beta chains. M. caroli has only one, 'Leporelike' beta chain, with structural features characteristic predominantly of betadmin chain in the N-terminal half and of betadmaj chain in the C-terminal half. The present paper presents sequence data on betas, betadmaj, betadmin, betapmin and betacmaj (d-like) chains. The data on betadmin chain cover almost the whole of that chain and show a minimum of nine differences from betadmaj chain and two from betapmin chain. It is suggested that the data on the beta chains of the various species show evidence for the past occurrence of double crossovers over regions within a gene coding for only one or a few amino acids, which events can be explained by the 'hybrid DNA' models of genetic recombination. Supplementary information on the amino acid sequence of the proteins has been deposited as Supplementary Publication SUP 50067 (36 pages) at the British Library Lending Division, Boston Spa, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1976) 153, 5.
Full text
PDF











Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bonaventura J., Riggs A. Polymerization of hemoglobins of mouse and man: structural basis. Science. 1967 Nov 10;158(3802):800–802. doi: 10.1126/science.158.3802.800-a. [DOI] [PubMed] [Google Scholar]
- Butler P. J., Harris J. I., Hartley B. S., Leberman R. Reversible blocking of peptide amino groups by maleic anhydride. Biochem J. 1967 Jun;103(3):78P–79P. [PMC free article] [PubMed] [Google Scholar]
- Clegg J. B., Naughton M. A., Weatherall D. J. Separation of the alpha and beta-chains of human hemoglobin. Nature. 1968 Jul 6;219(5149):69–70. doi: 10.1038/219069a0. [DOI] [PubMed] [Google Scholar]
- Edman P., Begg G. A protein sequenator. Eur J Biochem. 1967 Mar;1(1):80–91. doi: 10.1007/978-3-662-25813-2_14. [DOI] [PubMed] [Google Scholar]
- FANELLI A. R., ANTONINI E., CAPUTO A. Studies on the structure of hemoglobin. I. Physicochemical properties of human globin. Biochim Biophys Acta. 1958 Dec;30(3):608–615. doi: 10.1016/0006-3002(58)90108-2. [DOI] [PubMed] [Google Scholar]
- Gilman J. G. Mouse haemoglobin Beta chains. Sequence data on embryonic y chain and genetic linkage of the Y-chain locus to the adult beta-chain locus Hbb. Biochem J. 1976 May 1;155(2):231–241. doi: 10.1042/bj1550231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilman J. G. Rodent hemoglobin structure: a comparison of several species of mice. Ann N Y Acad Sci. 1974 Nov 29;241(0):416–433. doi: 10.1111/j.1749-6632.1974.tb21897.x. [DOI] [PubMed] [Google Scholar]
- HUTTON J. J., BISHOP J., SCHWEET R., RUSSELL E. S. Hemoglobin inheritance in inbred mouse strains. I. Structural differences. Proc Natl Acad Sci U S A. 1962 Sep 15;48:1505–1513. doi: 10.1073/pnas.48.9.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUTTON J. J., BISHOP J., SCHWEET R., RUSSELL E. S. Hemoglobin inheritance in inbred mouse strains. II. Genetic studies. Proc Natl Acad Sci U S A. 1962 Oct 15;48:1718–1724. doi: 10.1073/pnas.48.10.1718. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell M. B. ABERRANT RECOMBINATION OF PYRIDOXINE MUTANTS OF Neurospora. Proc Natl Acad Sci U S A. 1955 Apr 15;41(4):215–220. doi: 10.1073/pnas.41.4.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nute P. E., Stamatoyannopoulos G., Hermodson M. A., Roth D. Hemoglobinopathic erythrocytosis due to a new electrophoretically silent variant, hemoglobin San Diego (beta109 (G11)val--met). J Clin Invest. 1974 Jan;53(1):320–328. doi: 10.1172/JCI107553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perutz M. F., Lehmann H. Molecular pathology of human haemoglobin. Nature. 1968 Aug 31;219(5157):902–909. doi: 10.1038/219902a0. [DOI] [PubMed] [Google Scholar]
- Popp R. A., Bailiff E. G. Sequence of amino acids in the major and minor chains of the diffuse hemoglobin from BALB-c mice. Biochim Biophys Acta. 1973 Mar 23;303(1):61–67. doi: 10.1016/0005-2795(73)90148-7. [DOI] [PubMed] [Google Scholar]
- Popp R. A. Sequence of amino acids in the chain of single hemoglobins from C57BL, SWR, and NB mice. Biochim Biophys Acta. 1973 Mar 23;303(1):52–60. doi: 10.1016/0005-2795(73)90147-5. [DOI] [PubMed] [Google Scholar]
- RUSSELL E. S., GERALD P. S. Inherited electrophoretic hemoglobin patterns among 20 inbred strains of mice. Science. 1958 Dec 19;128(3338):1569–1570. doi: 10.1126/science.128.3338.1569. [DOI] [PubMed] [Google Scholar]
- Rice N. R. Change in repeated DNA in evolution. Brookhaven Symp Biol. 1972;23:44–79. [PubMed] [Google Scholar]
- Rifkin D. B., Rifkin M. R., Konigsberg W. The presence of two major hemoglobin components in an inbred strain of mice. Proc Natl Acad Sci U S A. 1966 Mar;55(3):586–592. doi: 10.1073/pnas.55.3.586. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Russell E. S., McFarland E. C. Genetics of mouse hemoglobins. Ann N Y Acad Sci. 1974 Nov 29;241(0):25–38. doi: 10.1111/j.1749-6632.1974.tb21864.x. [DOI] [PubMed] [Google Scholar]
- Smithies O., Gibson D., Fanning E. M., Goodfliesh R. M., Gilman J. G., Ballantyne D. L. Quantitative procedures for use with the Edman-Begg sequenator. Partial sequences of two unusual immunoglobulin light chains, Rzf and Sac. Biochemistry. 1971 Dec 21;10(26):4912–4921. doi: 10.1021/bi00802a013. [DOI] [PubMed] [Google Scholar]
- WHITEHOUSE H. L. A THEORY OF CROSSING-OVER BY MEANS OF HYBRID DEOXYRIBONUCLEIC ACID. Nature. 1963 Sep 14;199:1034–1040. doi: 10.1038/1991034a0. [DOI] [PubMed] [Google Scholar]

