Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1976 Oct 1;159(1):105–120. doi: 10.1042/bj1590105

Subsite mapping of enzymes. Depolymerase computer modelling.

J D Allen, J A Thoma
PMCID: PMC1164043  PMID: 999629

Abstract

We have developed a depolymerase computer model that uses a minimization routine. The model is designed so that, given experimental bond-cleavage frequencies for oligomeric substrates and experimental Michaelis parameters as a function of substrate chain length, the optimum subsite map is generated. The minimized sum of the weighted-squared residuals of the experimental and calculated data is used as a criterion of the goodness-of-fit for the optimized subsite map. The application of the minimization procedure to subsite mapping is explored through the use of simulated data. A procedure is developed whereby the minimization model can be used to determine the number of subsites in the enzymic binding region and to locate the position of the catalytic amino acids among these subsites. The degree of propagation of experimental variance into the subsite-binding energies is estimated. The question of whether hydrolytic rate coefficients are constant or a function of the number of filled subsites is examined.

Full text

PDF
105

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramowitz N., Schechter I., Berger A. On the size of the active site in proteases. II. Carboxypeptidase-A. Biochem Biophys Res Commun. 1967 Dec 29;29(6):862–867. doi: 10.1016/0006-291x(67)90299-9. [DOI] [PubMed] [Google Scholar]
  2. Allen J. D., Thoma J. A. Subsite mapping of enzymes. Application of the depolymerase computer model to two alpha-amylases. Biochem J. 1976 Oct 1;159(1):121–132. doi: 10.1042/bj1590121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Atlas D., Levit S., Schechter I., Berger A. On the active site of elastase: Partial mapping by means of specific peptide substrates. FEBS Lett. 1970 Dec 11;11(4):281–283. doi: 10.1016/0014-5793(70)80548-8. [DOI] [PubMed] [Google Scholar]
  4. CLELAND W. W. Computer programmes for processing enzyme kinetic data. Nature. 1963 May 4;198:463–465. doi: 10.1038/198463a0. [DOI] [PubMed] [Google Scholar]
  5. Chipman D. M., Sharon N. Mechanism of lysozyme action. Science. 1969 Aug 1;165(3892):454–465. doi: 10.1126/science.165.3892.454. [DOI] [PubMed] [Google Scholar]
  6. Chou J. Y., Singer M. F. The effect of chain length on the phosphorolysis of oligonucleotides by polynucleotide phosphorylase. J Biol Chem. 1970 Mar 10;245(5):1005–1011. [PubMed] [Google Scholar]
  7. Coggins J. R., Kray W., Shaw E. Affinity labelling of proteinases with tryptic specificity by peptides with C-terminal lysine chloromethyl ketone. Biochem J. 1974 Mar;137(3):579–585. doi: 10.1042/bj1370579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cuatrecasas P., Wilchek M., Anfinsen C. B. Staphylococcal nuclease: size and specificity of the active site. Science. 1968 Dec 27;162(3861):1491–1493. doi: 10.1126/science.162.3861.1491. [DOI] [PubMed] [Google Scholar]
  9. Godefroy T. Kinetics of polymerization and phosphorolysis reactions of Escherichia coli polynucleotide phosphorylase. Evidence for multiple binding of polynucleotide in phosphorolysis. Eur J Biochem. 1970 Jun;14(2):222–231. doi: 10.1111/j.1432-1033.1970.tb00281.x. [DOI] [PubMed] [Google Scholar]
  10. Hiromi K. Interpretation of dependency of rate parameters on the degree of polymerization of substrate in enzyme-catalyzed reactions. Evaluation of subsite affinities of exo-enzyme. Biochem Biophys Res Commun. 1970 Jul 13;40(1):1–6. doi: 10.1016/0006-291x(70)91037-5. [DOI] [PubMed] [Google Scholar]
  11. Holler E., Rupley J. A., Hess G. P. The determination of the dissociation constants of productive and unproductive lysozyme substrate complexes. FEBS Lett. 1974 Mar 15;40(1):25–28. doi: 10.1016/0014-5793(74)80885-9. [DOI] [PubMed] [Google Scholar]
  12. Iwasa S., Aoshima H., Hiromi K., Hatano H. Subsite affinities of bacterial liquefying alpha-amylase evaluated from the rate parameters of linear substrates. J Biochem. 1974 May;75(5):969–978. doi: 10.1093/oxfordjournals.jbchem.a130499. [DOI] [PubMed] [Google Scholar]
  13. Kato M., Hiromi K., Morita Y. Purification and kinetic studies of wheat bran beta-amylase. Evaluation of subsite affinities. J Biochem. 1974 Mar;75(3):563–576. doi: 10.1093/oxfordjournals.jbchem.a130424. [DOI] [PubMed] [Google Scholar]
  14. Lazarus H. M., Sporn M. B., Bradley D. F. A new kinetic model for polynucleotide metabolism. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1503–1510. doi: 10.1073/pnas.60.4.1503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mannervik B., Bártfai T. Discrimination between mathematical models of biological systems exemplified by enzyme steady state kinetics. Acta Biol Med Ger. 1973;31(2):203–215. [PubMed] [Google Scholar]
  16. Morihara K., Oka T. The complex active sites of bacterial neutral proteases in relation to their specificities. Biochem Biophys Res Commun. 1968 Mar 27;30(6):625–630. doi: 10.1016/0006-291x(68)90558-5. [DOI] [PubMed] [Google Scholar]
  17. Morihara K., Oka T., Tsuzuki H. Comparison of alpha-chymotrypsin and subtilisin BPN': size and specificity of the active site. Biochem Biophys Res Commun. 1969 Apr 29;35(2):210–214. doi: 10.1016/0006-291x(69)90269-1. [DOI] [PubMed] [Google Scholar]
  18. Nitta Y., Mizushima M., Hiromi K., Ono S. Influence of molecular structures of substrates and analogues on Taka-amylase A catalyzed hydrolyses. I. Effect of chain length of linear substrates. J Biochem. 1971 Mar;69(3):567–576. [PubMed] [Google Scholar]
  19. ROBYT J., FRENCH D. Action pattern and specificity of an amylase from Bacillus subtilis. Arch Biochem Biophys. 1963 Mar;100:451–467. doi: 10.1016/0003-9861(63)90112-7. [DOI] [PubMed] [Google Scholar]
  20. Rexová-Benková L. The size of the substrate-binding site of an Aspergillus niger extracellular endopolygalacturonase. Eur J Biochem. 1973 Nov 1;39(1):109–115. doi: 10.1111/j.1432-1033.1973.tb03109.x. [DOI] [PubMed] [Google Scholar]
  21. Robyt J. F., French D. The action pattern of porcine pancreatic alpha-amylase in relationship to the substrate binding site of the enzyme. J Biol Chem. 1970 Aug 10;245(15):3917–3927. [PubMed] [Google Scholar]
  22. Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
  23. Shibaoka T., Miyano K., Watanabe T. The number of subsites in the active site of saccharifying alpha-amylase from Bacillus subtilis. J Biochem. 1974 Sep;76(3):475–479. doi: 10.1093/oxfordjournals.jbchem.a130591. [DOI] [PubMed] [Google Scholar]
  24. Swann W. H. A survey of non-linear optimization techniques. FEBS Lett. 1969 Mar;2 (Suppl 1)(NaN):S39–S55. doi: 10.1016/0014-5793(69)80075-x. [DOI] [PubMed] [Google Scholar]
  25. Thoma J. A., Allen J. D. Subsite mapping of enzymes: collecting and processing experimental data--a case study of an amylase-malto-oligosaccharide system. Carbohydr Res. 1976 May;48(1):105–124. doi: 10.1016/s0008-6215(00)83518-1. [DOI] [PubMed] [Google Scholar]
  26. Thoma J. A., Brothers C., Spradlin J. Subsite mapping of enzymes. Studies on Bacillus subtilis amylase. Biochemistry. 1970 Apr 14;9(8):1768–1775. doi: 10.1021/bi00810a016. [DOI] [PubMed] [Google Scholar]
  27. Thoma J. A., Rao G. V., Brothers C., Spradlin J., Li L. H. Subsite mapping of enzymes. Correlation of product patterns with Michaelis parameters and substrate-induced strain. J Biol Chem. 1971 Sep 25;246(18):5621–5635. [PubMed] [Google Scholar]
  28. Thompson R. C., Blout E. R. Evidence for an extended active center in elastase. Proc Natl Acad Sci U S A. 1970 Dec;67(4):1734–1740. doi: 10.1073/pnas.67.4.1734. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES