Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1976 Nov;159(2):193–199. doi: 10.1042/bj1590193

Amino acid sequence of cytochrome c from Tetrahymena pyriformis Phenoset A.

G E Tarr, W M Fitch
PMCID: PMC1164106  PMID: 187170

Abstract

The cytochrome c of Tetrahymena pyriformis GL (Phenoset A) had an isoelectric point of 6.5 and by sequence the following composition: Asp(7) Asn(2) Thr(4) Ser(8) Glu(6) Gln(2) Pro(7) Gly(13) Ala(13) Val(7) Met(2) Ile(5) Leu(6) Tyr(2) Phe(5) Lys(11) His(3) Trp(1) Arg(3) Cys(2) (total 109 residues). The peptides derived from the protein afforded complete overlap, so a complete sequence could be determined without reference of homologous proteins. Alignment with other mitochondrial cytochromes c required two internal deletions totalling three residues and an N-terminal region two residues longer than, and a C-terminal region one residue shorter than, the previously known limits. The sequence was the most divergent of the known mitochondrial cytochromes c, suggesting a distant relationship of ciliates to other eukaryotes. Details of the sequence data have been deposited as Supplementary Publication no. SUP 50068 (37 pages) at The British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7 BQ, U.K., from whom copies can be obtained on the terms given in Biochem. J. (1976) 153,5.

Full text

PDF
193

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borden D., Whitt G. S., Nanney D. L. Electrophoretic characterization of classical Tetrahymena pyriformis strains. J Protozool. 1973 Nov;20(5):693–700. doi: 10.1111/j.1550-7408.1973.tb03601.x. [DOI] [PubMed] [Google Scholar]
  2. Brown R. H., Richardson M., Boulter D., Ramshaw J. A., Jefferies R. P. The amino acid sequence of cytochrome c from Helix aspersa Müller (garden snail). Biochem J. 1972 Jul;128(4):971–974. doi: 10.1042/bj1280971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Edman P., Begg G. A protein sequenator. Eur J Biochem. 1967 Mar;1(1):80–91. doi: 10.1007/978-3-662-25813-2_14. [DOI] [PubMed] [Google Scholar]
  4. Fitch W. M., Margoliash E. Construction of phylogenetic trees. Science. 1967 Jan 20;155(3760):279–284. doi: 10.1126/science.155.3760.279. [DOI] [PubMed] [Google Scholar]
  5. Fontana A., Veronese F. M., Boccu E. Reaction of sulfenyl halides with cytochrome c. A novel method for heme cleavage. FEBS Lett. 1973 May 15;32(1):135–138. doi: 10.1016/0014-5793(73)80756-2. [DOI] [PubMed] [Google Scholar]
  6. Fontana A., Vita C., Toniolo C. Selective cleavage of the single tryptophanyl peptide bond in horse heart cytochrome c. FEBS Lett. 1973 May 15;32(1):139–142. doi: 10.1016/0014-5793(73)80757-4. [DOI] [PubMed] [Google Scholar]
  7. Hennig B. Change of cytochrome c structure during development of the mouse. Eur J Biochem. 1975 Jun 16;55(1):167–183. doi: 10.1111/j.1432-1033.1975.tb02149.x. [DOI] [PubMed] [Google Scholar]
  8. Lin D. M., Niece R. L., Fitch W. M. The properties and amino-acid sequence of cytochrome c from Euglena gracilis. Nature. 1973 Feb 23;241(5391):533–535. doi: 10.1038/241533a0. [DOI] [PubMed] [Google Scholar]
  9. McLaughlin P. J., Dayhoff M. O. Eukaryote evolution: a view based on cytochrome c sequence data. J Mol Evol. 1973;2(2-3):99–116. doi: 10.1007/BF01653990. [DOI] [PubMed] [Google Scholar]
  10. Niece R. L. Automated single-column analysis of amino acids using ascorbic acid as reductant for air-stable ninhydrin. J Chromatogr. 1975 Jan 14;103(1):25–32. doi: 10.1016/s0021-9673(00)83798-x. [DOI] [PubMed] [Google Scholar]
  11. Pettigrew G. W. The amino acid sequence of a cytochrome c from a protozoan Crithidia oncopelti. FEBS Lett. 1972 Apr 15;22(1):64–66. doi: 10.1016/0014-5793(72)80220-5. [DOI] [PubMed] [Google Scholar]
  12. Pettigrew G. W. The amino-acid sequence of cytochrome c from Euglena gracilis. Nature. 1973 Feb 23;241(5391):531–533. doi: 10.1038/241531a0. [DOI] [PubMed] [Google Scholar]
  13. Smithies O., Gibson D., Fanning E. M., Goodfliesh R. M., Gilman J. G., Ballantyne D. L. Quantitative procedures for use with the Edman-Begg sequenator. Partial sequences of two unusual immunoglobulin light chains, Rzf and Sac. Biochemistry. 1971 Dec 21;10(26):4912–4921. doi: 10.1021/bi00802a013. [DOI] [PubMed] [Google Scholar]
  14. Tarr G. E. A general procedure for the manual sequencing of small quantities of peptides. Anal Biochem. 1975 Feb;63(2):361–370. doi: 10.1016/0003-2697(75)90358-9. [DOI] [PubMed] [Google Scholar]
  15. Yamada S., Itano H. Phenanthrenequinone as an analytical reagent for arginine and other monosubstituted guanidines. Biochim Biophys Acta. 1966 Dec 28;130(2):538–540. doi: 10.1016/0304-4165(66)90256-x. [DOI] [PubMed] [Google Scholar]
  16. Yamanaka T., Nagata Y., Okunuki K. Purification and properties of cytochrome c-553 and cytochrome B-560 from Tetrahymena pyriformis. J Biochem. 1968 Jun;63(6):753–760. doi: 10.1093/oxfordjournals.jbchem.a128840. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES