Abstract
1. Rat hearts were perfused with 32Pi, and contractile force was increased by positive inotropic agents (agents that increase contractility). The inhibitory subunit of troponin (troponin I) was then isolated by affinity chromatography in 8M-urea, and its 32P content measured. Incorporation of phosphate into the subunit was calculated on the basis of the [gamma-32P]ATP specific radioactivity in the hearts. 2. When hearts were perfused with 30 nM-DL-isoprenaline (N-isopropylnoradrenaline), there was an increase in contractile force over 30s which was paralleled by an increase in troponin I phosphorylation. When hearts were perfused for 25s with increasing concentrations of isoprenaline from 1 NM to 0.6 muM, there was again a parallel increase in contractile force and troponin I phosphorylation. The maximum phosphorylation observed was 1.5 mol of phosphate/mol of troponin I, which was reached after 25s with 0.1 muM-isoprenaline. 3. Hearts were stimulated with a 15s pulse perfusion of 30nM-DL-isoprenaline. There was an increase in contractile force which was followed by a return to the control value within 50s. Troponin I phosphorylation increased to a plateau value which was reached within 30s, and remained constant for 60s after the isoprenaline pulse. Phosphorylase a and 3':5'-cyclic AMP concentration showed changes similar to that of the contractile force. There was no change in 3':5'-cyclic GMP concentration. 4. When hearts stimulated with a 15S pulse of isoprenaline were subsequently perfused with 0.6 muM-acetylcholine, the changes in contractile force, phosphorylase a and 3':5'-cyclic AMP were very similar to those seen with the 15s pulse of isoprenaline alone. Troponin I phosphorylation increased to a maximum 30s after the end of the isoprenaline pulse, but then rapidly decreased during the subsequent 30s. This decrease was preceded by a 60% increase in the concentration of 3':5'-cyclic GMP. 5. Hearts were perfused with 0.2 muM-glucagon for periods up to 60s. Contractile force showed little change for the first 30s, but then increased rapidly. This was paralleled by changes in 3':5'-cyclic AMP concentration. Troponin I phosphorylation increased slowly, but the increase in contractile force had reached a maximum before significant phosphorylation had occurred. 6. It is concluded that under certain conditions, e.g. immediately after beta-adrenergic stimulation, there is a good correlation between contractile force and troponin I phosphorylation. However, under other conditions, e.g. when contractile force is decreasing after removal of beta-adrenergic stimulation or in the presence of glucagon, contractile force and troponin I phosphorylation are not well correlated. These results suggest that mechanisms for modifying cardiac contractility, other than troponin I phosphorylation, must be present in rat heart.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adelstein R. S., Conti M. A. Phosphorylation of platelet myosin increases actin-activated myosin ATPase activity. Nature. 1975 Aug 14;256(5518):597–598. doi: 10.1038/256597a0. [DOI] [PubMed] [Google Scholar]
- Brown B. L., Albano J. D., Ekins R. P., Sgherzi A. M. A simple and sensitive saturation assay method for the measurement of adenosine 3':5'-cyclic monophosphate. Biochem J. 1971 Feb;121(3):561–562. doi: 10.1042/bj1210561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen P., Antoniw J. F. The control of phosphorylase kinase phosphatase by "second site phosphorylation"; a new form of enzyme regulation. FEBS Lett. 1973 Aug 1;34(1):43–47. doi: 10.1016/0014-5793(73)80699-4. [DOI] [PubMed] [Google Scholar]
- Cohen P. The subunit structure of rabbit-skeletal-muscle phosphorylase kinase, and the molecular basis of its activation reactions. Eur J Biochem. 1973 Apr 2;34(1):1–14. doi: 10.1111/j.1432-1033.1973.tb02721.x. [DOI] [PubMed] [Google Scholar]
- Cohen P., Watson D. C., Dixon G. H. The hormonal control of activity of skeletal muscle phosphorylase kinase. Amino-acid sequences at the two sites of action of adenosine-3':5'-monophosphate-dependent protein kinase. Eur J Biochem. 1975 Feb 3;51(1):79–92. doi: 10.1111/j.1432-1033.1975.tb03909.x. [DOI] [PubMed] [Google Scholar]
- Cole H. A., Perry S. V. The phosphorylation of troponin I from cardiac muscle. Biochem J. 1975 Sep;149(3):525–533. doi: 10.1042/bj1490525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- England P. J. Correlation between contraction and phosphorylation of the inhibitory subunit of troponin in perfused rat heart. FEBS Lett. 1975 Jan 15;50(1):57–60. doi: 10.1016/0014-5793(75)81040-4. [DOI] [PubMed] [Google Scholar]
- FARAH A., TUTTLE R. Studies on the pharmacology of glucagon. J Pharmacol Exp Ther. 1960 May;129:49–55. [PubMed] [Google Scholar]
- FISCHER E. H., KREBS E. G. The isolation and crystallization of rabbit skeletal muscle phosphorylase b. J Biol Chem. 1958 Mar;231(1):65–71. [PubMed] [Google Scholar]
- Frearson N., Perry S. V. Phosphorylation of the light-chain components of myosin from cardiac and red skeletal muscles. Biochem J. 1975 Oct;151(1):99–107. doi: 10.1042/bj1510099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- George W. J., Wilkerson R. D., Kadowitz P. J. Influence of acetylcholine on contractile force and cyclic nucleotide levels in the isolated perfused rat heart. J Pharmacol Exp Ther. 1973 Jan;184(1):228–235. [PubMed] [Google Scholar]
- Glynn I. M., Chappell J. B. A simple method for the preparation of 32-P-labelled adenosine triphosphate of high specific activity. Biochem J. 1964 Jan;90(1):147–149. doi: 10.1042/bj0900147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greaser M. L., Gergely J. Reconstitution of troponin activity from three protein components. J Biol Chem. 1971 Jul 10;246(13):4226–4233. [PubMed] [Google Scholar]
- Hardman J. G., Mayer S. E., Clark B. Cocaine potentiation of the cardiac inotropic and phosphorylase responses to catecholamines as related to the uptake of H3-catecholamines. J Pharmacol Exp Ther. 1965 Dec;150(3):341–348. [PubMed] [Google Scholar]
- Huang F. L., Glinsmann W. H. Inactivation of rabbit muscle phosphorylase phosphatase by cyclic AMP-dependent kinas. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3004–3008. doi: 10.1073/pnas.72.8.3004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Itaya K., Ui M. A new micromethod for the colorimetric determination of inorganic phosphate. Clin Chim Acta. 1966 Sep;14(3):361–366. doi: 10.1016/0009-8981(66)90114-8. [DOI] [PubMed] [Google Scholar]
- Katz A. M., Tada M., Kirchberger M. A. Control of calcium transport in the myocardium by the cyclic AMP-Protein kinase system. Adv Cyclic Nucleotide Res. 1975;5:453–472. [PubMed] [Google Scholar]
- Kirchberger M. A., Tada M., Repke D. I., Katz A. M. Cyclic adenosine 3',5'-monophosphate-dependent protein kinase stimulation of calcium uptake by canine cardiac microsomes. J Mol Cell Cardiol. 1972 Dec;4(6):673–680. doi: 10.1016/0022-2828(72)90120-4. [DOI] [PubMed] [Google Scholar]
- Krause E. G., Will H., Schirpke B., Wollenberger A. Cyclic AMP-enhanced protein phosphorylation and calcium binding in a cell membrane-enriched fraction from myocardium. Adv Cyclic Nucleotide Res. 1975;5:473–490. [PubMed] [Google Scholar]
- Kukovetz W. R., Pöch G., Wurm A. Quantitative relations between cyclic AMP and contraction as affected by stimulators of adenylate cyclase and inhibitors of phosphodiesterase. Adv Cyclic Nucleotide Res. 1975;5:395–414. [PubMed] [Google Scholar]
- Lucchesi B. R. Cardiac actions of glucagon. Circ Res. 1968 Jun;22(6):777–787. doi: 10.1161/01.res.22.6.777. [DOI] [PubMed] [Google Scholar]
- Mayer S. E., Namm D. H., Rice L. Effect of glucagon on cyclic 3',5'-AMP, phosphorylase activity and contractility of heart muscle of the rat. Circ Res. 1970 Feb;26(2):225–233. doi: 10.1161/01.res.26.2.225. [DOI] [PubMed] [Google Scholar]
- Meisler M. H., Langan T. A. Characterization of a phosphatase specific for phosphorylated histones and protamine. J Biol Chem. 1969 Sep 25;244(18):4961–4968. [PubMed] [Google Scholar]
- Nimmo H. G., Cohen P. Glycogen synthetase kinase 2 (GSK 2); the identification of a new protein kinase in skeletal muscle. FEBS Lett. 1974 Oct 1;47(1):162–166. doi: 10.1016/0014-5793(74)80450-3. [DOI] [PubMed] [Google Scholar]
- Osnes J., Oye I. Relationship between cyclic AMP metabolism and inotropic response of perfused rat hearts to phenylephrine and other adrenergic amines. Adv Cyclic Nucleotide Res. 1975;5:415–433. [PubMed] [Google Scholar]
- Perrie W. T., Smillie L. B., Perry S. B. A phosphorylated light-chain component of myosin from skeletal muscle. Biochem J. 1973 Sep;135(1):151–164. doi: 10.1042/bj1350151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perry S. V., Cole H. A. Phosphorylation of the "37000 component" of the troponin complex (troponin-t). Biochem J. 1973 Feb;131(2):425–428. doi: 10.1042/bj1310425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perry S. V., Cole H. A. Phosphorylation of troponin and the effects of interactions between the components of the complex. Biochem J. 1974 Sep;141(3):733–743. doi: 10.1042/bj1410733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pires E., Perry S. V., Thomas M. A. Myosin light-chain kinase, a new enzyme from striated muscle. FEBS Lett. 1974 May 1;41(2):292–296. doi: 10.1016/0014-5793(74)81232-9. [DOI] [PubMed] [Google Scholar]
- Pratje E., Heilmeyer L. M.G. Phosphorylation of rabbit muscle troponin and actin by a 3', 5'-c-AMP-dependent protein kinase. FEBS Lett. 1972 Oct 15;27(1):89–93. doi: 10.1016/0014-5793(72)80416-2. [DOI] [PubMed] [Google Scholar]
- Ray K. P., England P. J. The identification and properties of phosphatases in skeletal muscle with activity towards the inhibitory subunit of troponin, and their relationship to other phosphoprotein phosphatases. Biochem J. 1976 Aug 1;157(2):369–380. doi: 10.1042/bj1570369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reddy Y. S., Ballard D., Giri N. Y., Schwartz A. Phosphorylation of cardiac native tropomyosin and troponin: inhibitory effect of actomyosin and possible presence of endogenous myofibrillar-located cyclic-AMP-dependent protein kinase. J Mol Cell Cardiol. 1973 Oct;5(5):461–471. doi: 10.1016/0022-2828(73)90016-3. [DOI] [PubMed] [Google Scholar]
- Reimann E. M., Walsh D. A., Krebs E. G. Purification and properties of rabbit skeletal muscle adenosine 3',5'-monophosphate-dependent protein kinases. J Biol Chem. 1971 Apr 10;246(7):1986–1995. [PubMed] [Google Scholar]
- Rubin C. S., Rosen O. M. Protein phosphorylation. Annu Rev Biochem. 1975;44:831–887. doi: 10.1146/annurev.bi.44.070175.004151. [DOI] [PubMed] [Google Scholar]
- Sobel B. E., Mayer S. E. Cyclic adenosine monophosphate and cardiac contractility. Circ Res. 1973 Apr;32(4):407–414. doi: 10.1161/01.res.32.4.407. [DOI] [PubMed] [Google Scholar]
- Stull J. T., Brostrom C. O., Krebs E. G. Phosphorylation of the inhibitor component of troponin by phosphorylase kinase. J Biol Chem. 1972 Aug 25;247(16):5272–5274. [PubMed] [Google Scholar]
- Stull J. T., Mayer S. E. Regulation of phosphorylase activation in skeletal muscle in vivo. J Biol Chem. 1971 Sep 25;246(18):5716–5723. [PubMed] [Google Scholar]
- Sulakhe P. V., Drummond G. I. Protein kinase-catalyzed phosphorylation of muscle sarcolemma. Arch Biochem Biophys. 1974 Apr 2;161(2):448–455. doi: 10.1016/0003-9861(74)90327-0. [DOI] [PubMed] [Google Scholar]
- Syska H., Perry S. V., Trayer I. P. A new method of preparation of troponin I (inhibitory protein) using affinity chromatography. Evidence for three different forms of troponin I in striated muscle. FEBS Lett. 1974 Apr 1;40(2):253–257. doi: 10.1016/0014-5793(74)80238-3. [DOI] [PubMed] [Google Scholar]
- Tada M., Kirchberger M. A., Repke D. I., Katz A. M. The stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3':5'-monophosphate-dependent protein kinase. J Biol Chem. 1974 Oct 10;249(19):6174–6180. [PubMed] [Google Scholar]
- Tishler P. V., Epstein C. J. A convenient method of preparing polyacrylamide gels for liquid scintillation spectrometry. Anal Biochem. 1968 Jan;22(1):89–98. doi: 10.1016/0003-2697(68)90262-5. [DOI] [PubMed] [Google Scholar]
- WOLLENBERGER A., RISTAU O., SCHOFFA G. [A simple technic for extremely rapid freezing of large pieces of tissue]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;270:399–412. [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]