Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1976 Nov 15;160(2):343–355. doi: 10.1042/bj1600343

Oxygen toxicity in the perfused rat liver and lung under hyperbaric conditions.

K Nishiki, D Jamieson, N Oshino, B Chance
PMCID: PMC1164241  PMID: 12754

Abstract

1. In the lung and liver of tocopherol-deficient rats, the activities of glutathione peroxidase and glucose 6-phosphate dehydrogenase were increased substantially, suggesting an important role for both enzymes in protecting the organ against the deleterious effects of lipid peroxides. 2. Facilitation of the glutathione peroxidase reaction by infusing t-butyl hydroperoxide caused the oxidation of nicotinamide nucleotides and glutathione, resulting in a concomitant increase in the rate of release of oxidized glutathione into the perfusate. Thus the rate of production of lipid peroxide and H2O2 in the perfused organ could be compared by simultaneous measurement of the rate of glutathione release and the turnover number of the catalase reaction. 3. On hyperbaric oxygenation at 4 X 10(5)Pa, H2O2 production, estimated from the turnover of the catalase reaction, was increased slightly in the liver, and glutathione release was increased slightly, in both lung and liver. 4. Tocopherol deficiency caused a marked increase in lipid-peroxide formation as indicated by a corresponding increase in glutathione release under hyperbaric oxygenation, with a further enhancement when the tocopherol-deficient rats were also starved. 5. The study demonstrates that the primary response to hyperbaric oxygenation is an elevation of the rate of lipid peroxidation rather than of the rate of formation of H2O2 or superoxide.

Full text

PDF
343

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AXELROD J. The enzymatic deamination of amphetamine (benzedrine). J Biol Chem. 1955 Jun;214(2):753–763. [PubMed] [Google Scholar]
  2. BARBER A. A., OTTOLENGHI A. Effect of ethylenediaminetetraacetate on lipide peroxide formation and succinoxidase inactivation by ultraviolet light. Proc Soc Exp Biol Med. 1957 Nov;96(2):471–473. doi: 10.3181/00379727-96-23510. [DOI] [PubMed] [Google Scholar]
  3. Boveris A., Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J. 1973 Jul;134(3):707–716. doi: 10.1042/bj1340707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bunyan J., Green J., Murrell E. A., Diplock A. T., Cawthorne M. A. On the postulated peroxidation of unsaturated lipids in the tissues of vitamin E-deficient rats. Br J Nutr. 1968 Feb;22(1):97–110. doi: 10.1079/bjn19680012. [DOI] [PubMed] [Google Scholar]
  5. CHANCE B., WILLIAMS G. R. The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem. 1956;17:65–134. doi: 10.1002/9780470122624.ch2. [DOI] [PubMed] [Google Scholar]
  6. COHEN G., HOCHSTEIN P. GLUTATHIONE PEROXIDASE: THE PRIMARY AGENT FOR THE ELIMINATION OF HYDROGEN PEROXIDE IN ERYTHROCYTES. Biochemistry. 1963 Nov-Dec;2:1420–1428. doi: 10.1021/bi00906a038. [DOI] [PubMed] [Google Scholar]
  7. Chance B., Graham N., Legallais V. Low temperature trapping method for cytochrome oxidase oxygen intermediates. Anal Biochem. 1975 Aug;67(2):552–579. doi: 10.1016/0003-2697(75)90331-0. [DOI] [PubMed] [Google Scholar]
  8. Chance B., Jamieson D., Coles H. Energy-linked pyridine nucleotide reduction: inhibitory effects of hyperbaric oxygen in vitro and in vivo. Nature. 1965 Apr 17;206(981):257–263. doi: 10.1038/206257a0. [DOI] [PubMed] [Google Scholar]
  9. Chance B., Oshino N. Analysis of the catalase--hydrogen peroxide intermediate in coupled oxidations. Biochem J. 1973 Mar;131(3):564–567. doi: 10.1042/bj1310564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chance B., Oshino N. Kinetics and mechanisms of catalase in peroxisomes of the mitochondrial fraction. Biochem J. 1971 Apr;122(2):225–233. doi: 10.1042/bj1220225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Clark J. M., Lambertsen C. J. Rate of development of pulmonary O2 toxicity in man during O2 breathing at 2.0 Ata. J Appl Physiol. 1971 May;30(5):739–752. doi: 10.1152/jappl.1971.30.5.739. [DOI] [PubMed] [Google Scholar]
  12. Cohen G., Heikkila R. E. The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents. J Biol Chem. 1974 Apr 25;249(8):2447–2452. [PubMed] [Google Scholar]
  13. Crapo J. D., Tierney D. F. Superoxide dismutase and pulmonary oxygen toxicity. Am J Physiol. 1974 Jun;226(6):1401–1407. doi: 10.1152/ajplegacy.1974.226.6.1401. [DOI] [PubMed] [Google Scholar]
  14. Di Luzio N. R., Hartman A. D. Role of lipid peroxidation in the pathogenesis of the ethanol-induced fatty liver. Fed Proc. 1967 Sep;26(5):1436–1442. [PubMed] [Google Scholar]
  15. Díaz Gómez M. I., de Castro C. R., D'Acosta N., de Fenos O. M., de Ferreyra E. C., Castro J. A. Species differences in carbon tetrachloride-induced hepatotoxicity: the role of CCl4 activation and of lipid peroxidation. Toxicol Appl Pharmacol. 1975 Oct;34(1):102–114. doi: 10.1016/0041-008x(75)90179-9. [DOI] [PubMed] [Google Scholar]
  16. Eggleston L. V., Krebs H. A. Regulation of the pentose phosphate cycle. Biochem J. 1974 Mar;138(3):425–435. doi: 10.1042/bj1380425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fisher A. B., Hyde R. W., Puy R. J., Clark J. M., Lambertsen C. J. Effect of oxygen at 2 atmospheres on the pulmonary mechanics of normal man. J Appl Physiol. 1968 Apr;24(4):529–536. doi: 10.1152/jappl.1968.24.4.529. [DOI] [PubMed] [Google Scholar]
  18. Flohé L., Schlegel W. Glutathion-Peroxidase. IV. Intrazelluläre Verteilung des Glutathion-Peroxidase-Systems in der Rattenleber. Hoppe Seylers Z Physiol Chem. 1971 Oct;352(10):1401–1410. [PubMed] [Google Scholar]
  19. Fridovich I. Superoxide dismutases. Annu Rev Biochem. 1975;44:147–159. doi: 10.1146/annurev.bi.44.070175.001051. [DOI] [PubMed] [Google Scholar]
  20. GILBERT D. L., GERSCHMAN R., RUHM K. B., PRICE W. E. The production of hydrogen peroxide by high oxygen pressures. J Gen Physiol. 1958 May 20;41(5):989–1003. doi: 10.1085/jgp.41.5.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gottlieb S. F. Hyperbaric oxygenation. Adv Clin Chem. 1965;8:69–139. doi: 10.1016/s0065-2423(08)60413-8. [DOI] [PubMed] [Google Scholar]
  22. Haugaard N. Cellular mechanisms of oxygen toxicity. Physiol Rev. 1968 Apr;48(2):311–373. doi: 10.1152/physrev.1968.48.2.311. [DOI] [PubMed] [Google Scholar]
  23. Haugaard N., Lee N. H., Kostrzewa R., Horn R. S., Haugaard E. S. The role of sulfhydryl groups in oxidative phosphorylation and ion transport by rat liver mitochrondia. Biochim Biophys Acta. 1969 Feb 25;172(2):198–204. doi: 10.1016/0005-2728(69)90063-2. [DOI] [PubMed] [Google Scholar]
  24. Horn R. S., Haugaard E. S., Haugaard N. The mechanism of the inhibition of glycolysis by oxygen in rat heart homogenate. Biochim Biophys Acta. 1965 Jun 22;99(3):549–552. doi: 10.1016/s0926-6593(65)80210-7. [DOI] [PubMed] [Google Scholar]
  25. JAMIESON D., VAN DEN BRENK H. A. Pulmonary damage due to high pressure oxygen breathing in rats. 2. Changes in dehydrogenase activity of rat lung. Aust J Exp Biol Med Sci. 1962 Feb;40:51–56. doi: 10.1038/icb.1962.7. [DOI] [PubMed] [Google Scholar]
  26. JAMIESON D., VANDENBRENK H. A. THE EFFECTS OF ANTIOXIDANTS ON HIGH PRESSURE OXYGEN TOXICITY. Biochem Pharmacol. 1964 Feb;13:159–164. doi: 10.1016/0006-2952(64)90133-9. [DOI] [PubMed] [Google Scholar]
  27. Johnson B. C., Sassoon H. F. Studies on the induction of liver glucose-6-phosphate dehydrogenase in the rat. Adv Enzyme Regul. 1967;5:93–106. doi: 10.1016/0065-2571(67)90011-8. [DOI] [PubMed] [Google Scholar]
  28. Johnson W. P., Jefferson D., Mengel C. E. In vivo formation of H2O2 in red cells during exposure to hyperoxia. J Clin Invest. 1972 Aug;51(8):2211–2213. doi: 10.1172/JCI107029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. KLINGENBERG M., SCHOLLMEYER P. [On the reversibility of oxidative phosphorylation. III. Effect of adenosine triphosphate on the respiratory chain in respiratory inhibited mitochondria]. Biochem Z. 1961;335:243–262. [PubMed] [Google Scholar]
  30. Keilin D., Hartree E. F. Properties of azide-catalase. Biochem J. 1945;39(2):148–157. doi: 10.1042/bj0390148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. LA DU B. N., GAUDETTE L., TROUSOF N., BRODIE B. B. Enzymatic dealkylation of aminopyrine (pyramidon) and other alkylamines. J Biol Chem. 1955 Jun;214(2):741–745. [PubMed] [Google Scholar]
  32. Lindros K. O., Oshino N., Parrilla R., Williamson J. R. Characteristics of ethanol and acetaldehyde oxidation on flavin and pyridine nucleotide fluorescence changes in perfused rat liver. J Biol Chem. 1974 Dec 25;249(24):7956–7963. [PubMed] [Google Scholar]
  33. Little C., O'Brien P. J. An intracellular GSH-peroxidase with a lipid peroxide substrate. Biochem Biophys Res Commun. 1968 Apr 19;31(2):145–150. doi: 10.1016/0006-291x(68)90721-3. [DOI] [PubMed] [Google Scholar]
  34. MILLS G. C., RANDALL H. P. Hemoglobin catabolism. II. The protection of hemoglobin from oxidative breakdown in the intact erythrocyte. J Biol Chem. 1958 Jun;232(2):589–598. [PubMed] [Google Scholar]
  35. Oshino N., Chance B., Sies H., Bücher T. The role of H 2 O 2 generation in perfused rat liver and the reaction of catalase compound I and hydrogen donors. Arch Biochem Biophys. 1973 Jan;154(1):117–131. doi: 10.1016/0003-9861(73)90040-4. [DOI] [PubMed] [Google Scholar]
  36. Oshino N., Chance B. The properties of sulfite oxidation in perfused rat liver; interaction of sulfite oxidase with the mitochondrial respiratory chain. Arch Biochem Biophys. 1975 Oct;170(2):514–528. doi: 10.1016/0003-9861(75)90147-2. [DOI] [PubMed] [Google Scholar]
  37. Oshino N., Jamieson D., Chance B. The properties of hydrogen peroxide production under hyperoxic and hypoxic conditions of perfused rat liver. Biochem J. 1975 Jan;146(1):53–65. doi: 10.1042/bj1460053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Oshino N., Jamieson D., Sugano T., Chance B. Optical measurement of the catalase-hydrogen peroxide intermediate (Compound I) in the liver of anaesthetized rats and its implication to hydrogen peroxide production in situ. Biochem J. 1975 Jan;146(1):67–77. doi: 10.1042/bj1460067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. PHILPOT J. S. The estimation and identification of organic peroxides. Radiat Res. 1963;Suppl 3:55–70. [PubMed] [Google Scholar]
  40. Puy R. J., Hyde R. W., Fisher A. B., Clark J. M., Dickson J., Lambertsen C. J. Alterations in the pulmonary capillary bed during early O2 toxicity in man. J Appl Physiol. 1968 Apr;24(4):537–543. doi: 10.1152/jappl.1968.24.4.537. [DOI] [PubMed] [Google Scholar]
  41. Raskin P., Lipman R. L., Oloff C. M. Effect of hyperbaric oxygen on lipid peroxidation in the lung. Aerosp Med. 1971 Jan;42(1):28–30. [PubMed] [Google Scholar]
  42. Recknagel R. O. Carbon tetrachloride hepatotoxicity. Pharmacol Rev. 1967 Jun;19(2):145–208. [PubMed] [Google Scholar]
  43. Riely C. A., Cohen G., Lieberman M. Ethane evolution: a new index of lipid peroxidation. Science. 1974 Jan 18;183(4121):208–210. doi: 10.1126/science.183.4121.208. [DOI] [PubMed] [Google Scholar]
  44. Roehm J. N., Hadley J. G., Menzel D. B. Antioxidants vs lung disease. Arch Intern Med. 1971 Jul;128(1):88–93. [PubMed] [Google Scholar]
  45. Sies H., Bücher T., Oshino N., Chance B. Heme occupancy of catalase in hemoglobin-free perfused rat liver and of isolated rat liver catalase. Arch Biochem Biophys. 1973 Jan;154(1):106–116. doi: 10.1016/0003-9861(73)90039-8. [DOI] [PubMed] [Google Scholar]
  46. Sies H., Chance B. The steady state level of catalase compound I in isolated hemoglobin-free perfused rat liver. FEBS Lett. 1970 Dec;11(3):172–176. doi: 10.1016/0014-5793(70)80521-x. [DOI] [PubMed] [Google Scholar]
  47. Srivastava S. K., Beutler E. The transport of oxidized glutathione from the erythrocytes of various species in the presence of chromate. Biochem J. 1969 Oct;114(4):833–837. doi: 10.1042/bj1140833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Theorell H., Chance B., Yonetani T., Oshino N. The combustion of alcohol and its inhibition by 4-methyl-pyrazole in perfused rat livers. Arch Biochem Biophys. 1972 Aug;151(2):434–444. doi: 10.1016/0003-9861(72)90519-x. [DOI] [PubMed] [Google Scholar]
  49. Thomas H. V., Mueller P. K., Lyman R. L. Lipoperoxidation of lung lipids in rats exposed to nitrogen dioxide. Science. 1968 Feb 2;159(3814):532–534. doi: 10.1126/science.159.3814.532. [DOI] [PubMed] [Google Scholar]
  50. Thomas J. J., Neptune E. M., Sudduth H. C. Toxic effects of oxygen at high pressure on the metabolism of d-glucose by dispersions of rat brain. Biochem J. 1963 Jul;88(1):31–45. doi: 10.1042/bj0880031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Tierney D., Ayers L., Herzog S., Yang J. Pentose pathway and production of reduced nicotinamide adenine dinucleotide phosphate. A mechanism that may protect lungs from oxidants. Am Rev Respir Dis. 1973 Dec;108(6):1348–1351. doi: 10.1164/arrd.1973.108.6.1348. [DOI] [PubMed] [Google Scholar]
  52. Winter P. M., Smith G. The toxicity of oxygen. Anesthesiology. 1972 Aug;37(2):210–241. doi: 10.1097/00000542-197208000-00010. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES