Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1976 Dec 15;160(3):547–564. doi: 10.1042/bj1600547

Calcium metabolism and amylase release in rat parotid acinar cells.

P Kanagasuntheram, P J Randle
PMCID: PMC1164270  PMID: 189753

Abstract

1. A method is described for the isolation of rat parotid acinar cells by controlled digestion of the gland with trypsin followed by collagenase. As judged by Trypan Blue exclusion, electron microscopy, water, electrolyte and ATP concentrations and release of amylase and lactate dehydrogenase, the cells are morphologically and functionally intact. 2. A method was developed for perifusion of acinar cells by embedding them in Sephadex G-10. Release of amylase was stimulated by adrenaline (0.1-10muM), isoproternol (1 or 10 MUM), phenylephrine (1 muM), carbamoylcholine (0.1 or 1 muM), dibutyryl cycle AMP (2 MM), 3-isobutyl-1-methylxanthine (1mM) and ionophore A23187. The effects of phenylephrine, carbamoylcholine and ionophore A23187 required extracellular Ca2+, whereas the effects of adrenaline and isoproterenol did not. 3. The incorporation of 45Ca into parotid cells showed a rapidly equilibrating pool (1-2 min) corresponding to 15% of total Ca2+ and a slowly equilibrating pool (greater than 3h) of probably a similar dimension. Cholinergic and alpha-adrenergic effectors and ionophore A23187 and 2,4-dinitrophenol increased the rate of incorporation of 45Ca into a slowly equilibrating pool, whereas beta-adrenergic effectors and dibutyryl cyclic AMP were inactive. 4. The efflux of 45Ca from cells into Ca2+-free medium was inhibited by phenylephrine and carbamoylcholine and accelerated by isoproterenol, adrenaline (beta-adrenergic effect), dibutyryl cyclic AMP and ionophore A23187. 5. A method was developed for the measurement of exchangeable 45Ca in mitochondria in parotid pieces. Incorporation of 45Ca into mitochondria was decreased by isoproterenol, dibutyryl cyclic AMP or 2,4-dinitrophenol, increased by adrenaline, and not changed significantly by phenylephrine or carbamoylcholine. Release of 45Ca from mitochondria in parotid pieced incubated in a Ca2+-free medium was increased by isoproterenol, adrenaline, dibutyryl cyclic AMP or 2,4-dinitrophenol and unaffected by phenylephrine or carbamoylcholine. 6. These findings are compatible with a role for Ca2+ as a mediator of amylase-secretory responses in rat parotid acinar cells, but no definite conclusions about its role can be drawn in the absence of knowledge of the molecular mechanisms involved, their location, and free Ca2+ concentration in appropriate cell compartment(s).

Full text

PDF
547

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amsterdam A., Ohad I., Schramm M. Dynamic changes in the ultrastructure of the acinar cell of the rat parotid gland during the secretory cycle. J Cell Biol. 1969 Jun;41(3):753–773. doi: 10.1083/jcb.41.3.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashley C. C., Ridgway E. B. On the relationships between membrane potential, calcium transient and tension in single barnacle muscle fibres. J Physiol. 1970 Jul;209(1):105–130. doi: 10.1113/jphysiol.1970.sp009158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BDOLAH A., BEN-ZVI R., SCHRAMM M. THE MECHANISM OF ENZYME SECRETION BY THE CELL. II. SECRETION OF AMYLASE AND OTHER PROTEINS BY SLICES OF RAT PAROTID GLAND. Arch Biochem Biophys. 1964 Jan;104:58–66. doi: 10.1016/s0003-9861(64)80034-5. [DOI] [PubMed] [Google Scholar]
  4. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Babad H., Ben-Zvi R., Bdolah A., Schramm M. The mechanism of enzyme secretion by the cell. 4. Effects of inducers, substrates and inhibitors on amylase secretion by rat parotid slices. Eur J Biochem. 1967 Mar;1(1):96–101. doi: 10.1111/j.1432-1033.1967.tb00049.x. [DOI] [PubMed] [Google Scholar]
  6. Baker P. F. Transport and metabolism of calcium ions in nerve. Prog Biophys Mol Biol. 1972;24:177–223. doi: 10.1016/0079-6107(72)90007-7. [DOI] [PubMed] [Google Scholar]
  7. Batzri S., Selinger Z. Enzyme secretion mediated by the epinephrine -receptor in rat parotid slices. Factors governing efficiency of the process. J Biol Chem. 1973 Jan 10;248(1):356–360. [PubMed] [Google Scholar]
  8. Batzri S., Selinger Z., Schramm M., Robinovitch M. R. Potassium release mediated by the epinephrine -receptor in rat parotid slices. Properties and relation to enzyme secretion. J Biol Chem. 1973 Jan 10;248(1):361–368. [PubMed] [Google Scholar]
  9. Borle A. B. Kinetic analysis of calcium movements in cell culture. V. Intracellular calcium distribution in kidney cells. J Membr Biol. 1972;10(1):45–66. doi: 10.1007/BF01867847. [DOI] [PubMed] [Google Scholar]
  10. Butcher F. R., Goldman J. A., Nemerovski Effect of adrenergic agents on alpha-amylase release and adenosine 3',5'-monophosphate accumulation in rat parotid tissue slices. Biochim Biophys Acta. 1975 May 5;392(1):82–94. doi: 10.1016/0304-4165(75)90168-3. [DOI] [PubMed] [Google Scholar]
  11. Butcher F. R. The role of calcium and cyclic nucleotides in alpha-amylase release from slices of rat parotid: studies with the divalent cation ionophore A-23187. Metabolism. 1975 Mar;24(3):409–418. doi: 10.1016/0026-0495(75)90120-1. [DOI] [PubMed] [Google Scholar]
  12. CHANCE B., WILLIAMS G. R. Respiratory enzymes in oxidative phosphorylation. III. The steady state. J Biol Chem. 1955 Nov;217(1):409–427. [PubMed] [Google Scholar]
  13. Coore H. G., Denton R. M., Martin B. R., Randle P. J. Regulation of adipose tissue pyruvate dehydrogenase by insulin and other hormones. Biochem J. 1971 Nov;125(1):115–127. doi: 10.1042/bj1250115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. DOUGLAS W. W., RUBIN R. P. The role of calcium in the secretory response of the adrenal medulla to acetylcholine. J Physiol. 1961 Nov;159:40–57. doi: 10.1113/jphysiol.1961.sp006791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dormer R. L., Ashcroft S. J. Studies on the role of calcium ions in the stimulation by adrenaline of amylase release from rat parotid. Biochem J. 1974 Dec;144(3):543–550. doi: 10.1042/bj1440543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Feinstein H., Schramm M. Energy production in rat parotid gland. Relation tonzyme secretion and effects of caium. Eur J Biochem. 1970 Mar 1;13(1):158–163. doi: 10.1111/j.1432-1033.1970.tb00912.x. [DOI] [PubMed] [Google Scholar]
  17. Harfield B., Tenenhouse A. Effect of EGTA on protein release and cyclic AMP accumulation in rat parotid gland. Can J Physiol Pharmacol. 1973 Dec;51(12):997–1001. doi: 10.1139/y73-152. [DOI] [PubMed] [Google Scholar]
  18. Kondo S., Schulz I. Calcium ion uptake in isolated pancreas cells induced by secretagogues. Biochim Biophys Acta. 1976 Jan 8;419(1):76–92. doi: 10.1016/0005-2736(76)90373-4. [DOI] [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Malaisse W. J. Insulin secretion: multifactorial regulation for a single process of release. The Minkowski award lecture delivered on September 7, 1972 before the European Association for the study of Diabetes at Madrid, Spain. Diabetologia. 1973 Jun;9(3):167–173. doi: 10.1007/BF01219778. [DOI] [PubMed] [Google Scholar]
  21. Malamud D. Amylase secretion from mouse parotid and pancreas: role of cyclic AMP and isoproterenol. Biochim Biophys Acta. 1972 Sep 15;279(2):373–376. doi: 10.1016/0304-4165(72)90155-9. [DOI] [PubMed] [Google Scholar]
  22. Mangos J. A., McSherry N. R., Barber T., Arvanitakis S. N., Wagner V. Dispersed rat parotid acinar cells. II. Characterization of adrenergic receptors. Am J Physiol. 1975 Sep;229(3):560–565. doi: 10.1152/ajplegacy.1975.229.3.560. [DOI] [PubMed] [Google Scholar]
  23. Mangos J. A., McSherry N. R., Barber T. Dispersed rat parotid acinar cells. III. Characterization of cholinergic receptors. Am J Physiol. 1975 Sep;229(3):566–569. doi: 10.1152/ajplegacy.1975.229.3.566. [DOI] [PubMed] [Google Scholar]
  24. Mangos J. A., McSherry N. R., Butcher F., Irwin K., Barber T. Dispersed rat parotid acinar cells. I. Morphological and functional characterization. Am J Physiol. 1975 Sep;229(3):553–559. doi: 10.1152/ajplegacy.1975.229.3.553. [DOI] [PubMed] [Google Scholar]
  25. PORTZEHL H., CALDWELL P. C., RUEEGG J. C. THE DEPENDENCE OF CONTRACTION AND RELAXATION OF MUSCLE FIBRES FROM THE CRAB MAIA SQUINADO ON THE INTERNAL CONCENTRATION OF FREE CALCIUM IONS. Biochim Biophys Acta. 1964 May 25;79:581–591. doi: 10.1016/0926-6577(64)90224-4. [DOI] [PubMed] [Google Scholar]
  26. Randle P. J., Denton R. M., Pask H. T., Severson D. L. Calcium ions and the regulation of pyruvate dehydrogenase. Biochem Soc Symp. 1974;(39):75–88. [PubMed] [Google Scholar]
  27. Rasmussen H., Tenenhouse A. Cyclic adenosine monophosphate, CA++, and membranes. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1364–1370. doi: 10.1073/pnas.59.4.1364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Reed K. C. Binding of calcium by cellulose membranes and sephadex. Biochem Biophys Res Commun. 1973 Feb 20;50(4):1136–1142. doi: 10.1016/0006-291x(73)91524-6. [DOI] [PubMed] [Google Scholar]
  29. Reed P. W., Lardy H. A. A23187: a divalent cation ionophore. J Biol Chem. 1972 Nov 10;247(21):6970–6977. [PubMed] [Google Scholar]
  30. Schramm M. Amylase secretion in rat parotid slices by apparent activation of endogenous catecholamine. Biochim Biophys Acta. 1968 Oct 15;165(3):546–549. doi: 10.1016/0304-4165(68)90238-9. [DOI] [PubMed] [Google Scholar]
  31. Schramm M., Selinger Z. The functions of cyclic AMP and calcium as alternative second messengers in parotid gland and pancreas. J Cyclic Nucleotide Res. 1975;1(4):181–192. [PubMed] [Google Scholar]
  32. Selinger Z., Batzri S., Eimerl S., Schramm M. Calcium and energy requirements for K + release mediated by the epinephrine -receptor in rat parotid slices. J Biol Chem. 1973 Jan 10;248(1):369–372. [PubMed] [Google Scholar]
  33. Selinger Z., Naim E., Lasser M. ATP-dependent calcium uptake by microsomal preparations from rat parotid and submaxillary glands. Biochim Biophys Acta. 1970 Apr 21;203(2):326–334. doi: 10.1016/0005-2736(70)90147-1. [DOI] [PubMed] [Google Scholar]
  34. Selinger Z., Naim E. The effect of calcium on amylase secretion by rat parotid slices. Biochim Biophys Acta. 1970 Apr 21;203(2):335–337. doi: 10.1016/0005-2736(70)90148-3. [DOI] [PubMed] [Google Scholar]
  35. Severson D. L., Denton R. M., Bridges B. J., Randle P. J. Exchangeable and total calcium pools in mitochondria of rat epididymal fat-pads and isolated fat-cells. Role in the regulation of pyruvate dehydrogenase activity. Biochem J. 1976 Jan 15;154(1):209–223. doi: 10.1042/bj1540209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Severson D. L., Denton R. M., Pask H. T., Randle P. J. Calcium and magnesium ions as effectors of adipose-tissue pyruvate dehydrogenase phosphate phosphatase. Biochem J. 1974 May;140(2):225–237. doi: 10.1042/bj1400225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Stanley P. E., Williams S. G. Use of the liquid scintillation spectrometer for determining adenosine triphosphate by the luciferase enzyme. Anal Biochem. 1969 Jun;29(3):381–392. doi: 10.1016/0003-2697(69)90323-6. [DOI] [PubMed] [Google Scholar]
  38. TENNANT J. R. EVALUATION OF THE TRYPAN BLUE TECHNIQUE FOR DETERMINATION OF CELL VIABILITY. Transplantation. 1964 Nov;2:685–694. doi: 10.1097/00007890-196411000-00001. [DOI] [PubMed] [Google Scholar]
  39. Wallach D., Schramm M. Calcium and the exportable protein in rat parotid gland. Parallel subcellular distribution and concomitant secretion. Eur J Biochem. 1971 Aug 16;21(3):433–437. doi: 10.1111/j.1432-1033.1971.tb01489.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES