Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1976 Dec 15;160(3):597–601. doi: 10.1042/bj1600597

Metabolic effect of alpha-and the beta-adrenergic stimulation of rat submaxillary gland in vitro.

M P Thompson, D H Williamson
PMCID: PMC1164275  PMID: 1032950

Abstract

1. Incubation of submaxillary-gland slices with isoproterenol, a beta-adrenergic agonist, stimulated glucose removal by 41% and decreased tissue [glucose 6-phosphate] by 50%. Propranolol blocked these effects of isoproterenol. 2. Phenylephrine, an alpha-adrenergic agonist, stimulated glucose removal by 35% and decreased tissue [glucose 6-phosphate] by 75%. In addition, phenylephrine also completely overcame the inhibition of pyruvate removal caused by acetoacetate metabolism and decreased tissue [atp] by 45%. Phentolamine blocked the effects of phenylephrine. 3. In contrast with beta-adrenergic stimulation, alpha-adrenergic stimulation required exogenous Ca2+. 4. These results explain the different metabolic responses of the submaxillary gland to adrenaline in the presence and absence of exogenous Ca2+.

Full text

PDF
597

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Batzri S., Selinger Z. Enzyme secretion mediated by the epinephrine -receptor in rat parotid slices. Factors governing efficiency of the process. J Biol Chem. 1973 Jan 10;248(1):356–360. [PubMed] [Google Scholar]
  2. Batzri S., Selinger Z., Schramm M., Robinovitch M. R. Potassium release mediated by the epinephrine -receptor in rat parotid slices. Properties and relation to enzyme secretion. J Biol Chem. 1973 Jan 10;248(1):361–368. [PubMed] [Google Scholar]
  3. Herman G., Rossignol B. Regulation of protein secretion and metabolism in rat salivary glands. Effects of norepinephrine and carbachol on the glycogenolysis in submaxillary glands. Eur J Biochem. 1975 Jun 16;55(1):105–110. doi: 10.1111/j.1432-1033.1975.tb02142.x. [DOI] [PubMed] [Google Scholar]
  4. Krebs H. A., Eggleston L. V. Metabolism of acetoacetate in animal tissues. 1. Biochem J. 1945;39(5):408–419. [PMC free article] [PubMed] [Google Scholar]
  5. Mangos J. A., McSherry N. R., Barber T., Arvanitakis S. N., Wagner V. Dispersed rat parotid acinar cells. II. Characterization of adrenergic receptors. Am J Physiol. 1975 Sep;229(3):560–565. doi: 10.1152/ajplegacy.1975.229.3.560. [DOI] [PubMed] [Google Scholar]
  6. Michell R. H. Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta. 1975 Mar 25;415(1):81–47. doi: 10.1016/0304-4157(75)90017-9. [DOI] [PubMed] [Google Scholar]
  7. Michell R. H., Jones L. M. Enhanced phosphatidylinositol labelling in rat parotid fragments exposed to alpha-adrenergic stimulation. Biochem J. 1974 Jan;138(1):47–52. doi: 10.1042/bj1380047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Oron Y., Lowe M., Selinger Z. Involvement of the alpha-adrenergic receptor in the phospholipid effect in rat parotid. FEBS Lett. 1973 Aug 15;34(2):198–200. doi: 10.1016/0014-5793(73)80792-6. [DOI] [PubMed] [Google Scholar]
  9. Thompson M. P., Williamson D. H. Metabolic interactions of glucose, acetoacetate and adrenaline in rat submaxillary gland in vitro. Biochem J. 1975 Mar;146(3):635–644. doi: 10.1042/bj1460635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Thompson M. P., Williamson D. H. The ability of the calcium ionophore A-23187 to mimic some of the effects of adrenaline on the metabolism of rat submaxillary gland. FEBS Lett. 1976 Feb 15;62(2):208–211. doi: 10.1016/0014-5793(76)80054-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES