SUMMARY
Interactions between the developing heart and the embryonic immune system are essential for proper cardiac development and maintaining homeostasis, with disruptions linked to various diseases. While human pluripotent stem cell (hPSC)-derived organoids are valuable models for studying human organ function, they often lack critical tissue-resident immune cells. Here, we introduce an advanced human heart assembloid model, termed hHMA (human heart-macrophage assembloid), which fully integrates autologous cardiac tissue- resident macrophages (MPs) with pre-existing human heart organoids (hHOs). Through multi-omic analyses, we confirmed that these MPs are phenotypically similar to embryonic cardiac tissue-resident MPs and remain viable in the assembloids over time. The inclusion of MPs significantly impacts hHMA development, influencing cardiac cellular composition, boosting cellular communication, remodeling the extracellular matrix, promoting ventricular morphogenesis, and enhancing sarcomeric maturation. Our findings indicate that MPs contribute to homeostasis via efferocytosis, integrate into the cardiomyocyte electrical system, and support catabolic metabolism. To demonstrate the versatility of this model, we developed a platform to study cardiac arrhythmias by chronic exposure to pro-inflammatory factors linked to arrhythmogenesis in clinical settings, successfully replicating key features of inflammasome-mediated atrial fibrillation. Overall, this work introduces a robust platform for examining the role of immune cells in cardiac development, disease mechanisms, and drug discovery, bridging the gap between in vitro models and human physiology. These findings offer insights into cardiogenesis and inflammation-driven heart disease, positioning the hHMA system as an invaluable tool for future cardiovascular research and therapeutic development.
Full Text Availability
The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.