Skip to main content
Molecules logoLink to Molecules
. 2024 Nov 28;29(23):5646. doi: 10.3390/molecules29235646

Bis-Iridoids: Occurrence, Chemophenetic Evaluation and Biological Activities—A Review

Claudio Frezza 1,*, Alessandro Venditti 2, Daniela De Vita 3, Marcella Guiso 4, Armandodoriano Bianco 4
Editors: David Barker, Arjun H Banskota
PMCID: PMC11643030  PMID: 39683806

Abstract

In this work, the first review paper about bis-iridoids was presented. In particular, their detailed occurrence, chemophenetic evaluation and biological activities were reported. To the best of our knowledge, two hundred and eighty-eight bis-iridoids have been evidenced so far, bearing different structural features, with the link between two seco-iridoids sub-units as the major one. Different types of base structures have been found, with catalpol, loganin, paederosidic acid, olesoide methyl ester, secoxyloganin and loganetin as the major ones. Even bis-irdioids with non-conventional structures like intra-cyclized and non-alkene six rings have been reported. Some of these compounds have been individuated as chemophenetic markers at different levels, such as cantleyoside, laciniatosides, sylvestrosides, GI-3, GI-5, oleonuezhenide, (Z)-aldosecologanin and centauroside. Only one hundred and fifty-nine bis-iridoids have been tested for their biological effects, including enzymatic, antioxidant, antimicrobial, antitumoral and anti-inflammatory. Sylvestroside I was the compound with the highest number of biological tests, whereas cantleyoside was the compound with the highest number of specific biological tests. Bis-iridoids have not always shown activity, and when active, their effectiveness values have been both higher and lower than the positive controls, if present. All these aspects have been deeply discussed in this paper, which also shows some critical issues and even suggests possible arguments for future research, since there is still a lot unknown about bis-iridoids.

Keywords: bis-iridoids, occurrence, chemophenetic value, biological activities

1. Introduction

Bis-iridoids are a sub-class of iridoids characterized by the link of two iridoidic sensu lato sub-units to form a bigger molecule. Actually, these sub-units may be extremely different, and the bond may occur in different positions of both the sub-units, including the glucose moiety but also after conjugation with other classes of natural compounds like phenolics and terpenes to act as a bridge between them [1,2,3,4,5].

They are biosynthesized following the general route for the biosynthesis of simple iridoids and seco-iridoids but with the further passage of the intermolecular bond of the two sub-units alone or after conjugation with bridges [6].

In the literature, there is no specific review paper on bis-iridoids, whereas several review papers have dealt with the topic of iridoids in general on several aspects [1,2,3,4,5,7,8,9,10].

In this review paper, the occurrence, chemophenetic value and biological activities of bis-iridoids are presented and discussed in detail. The literature search was conducted on renowned scientific databases such as PubMed, PubChem, Google Scholar and Reaxys using keywords like bis-iridoid, bis-iridoids, occurrence, biological activities alone or together and specific names of compounds or plant species, as recovered from previous papers. All the papers written in English in spite of their publication year and journal were considered. Not fully accessible papers were also included. Indeed, all the papers not concerning plant species, concerning a mixture of plants where the identification of this type of compounds has not been clearly attributed, deriving from cell cultures or from sure enhancement of their production in a botanical or biotechnological manner, were neglected.

2. Occurrence of Bis-Iridoids in Plants

Table 1 reports on the occurrence of bis-iridoids in plants in alphabetical order. In this, the organs of the plants where they have been recovered and the collection area of the species, as well as the methodologies adopted for their extraction, separation and identification, are also presented.

Table 1.

List of all the identified bis-iridoids in plants.

Name of the Compound Plant Species Studied
Organ
Collection Area Methodology of Extraction, Separation and Identification Reference
5-hydroxy-2‴-O-caffeoyl-caryocanoside B (Figure 5) Caryopteris incana (Thunb. ex Houtt.) Miq. Whole plant China SE, PP, CC, α[D], IR, NMR, HR-MS [10]
7-O-acetyl-abelioside B (Figure 30) Linnaea chinensis A.Braun & Vatke Aerial parts Italy SE, PP, CC, α[D], IR, UV, NMR, MS [11]
7-O-acetyl-laciniatoside IV (Figure 30) Linnaea chinensis A.Braun & Vatke Aerial parts Italy SE, PP, CC, α[D], IR, UV, NMR, MS [11]
7-O-acetyl-laciniatoside V (Figure 30) Linnaea chinensis A.Braun & Vatke Aerial parts Italy SE, PP, CC, α[D], IR, UV, NMR, MS [11]
7-O-caffeoyl-
sylvestroside I (Figure 9)
Lomelosia stellata (L.) Raf. Whole plant Algeria SE, CC, CPC, rp-FC, HPLC-UV, α[D], UV, NMR, HR-MS [12]
7-O-(p-coumaroyl)-sylvestroside I (Figure 9) Lomelosia stellata (L.) Raf. Whole plant Algeria SE, CC, CPC, rp-FC, HPLC-UV, α[D], UV, NMR, HR-MS [12]
6′-O-(7α-hydroxy-swerosyloxy)-loganin (Figure 11) Lonicera japonica Thunb. Stems and leaves Japan (purchased from a company) SE, PP, VV, p-HPLC-UV, NMR [13]
2‴-O-(E)-p-coumaroyl-caryocanoside B (Figure 5) Caryopteris incana (Thunb. ex Houtt.) Miq Whole plant China SE, PP, CC, p-HPLC-UV, α[D], IR, NMR, HR-MS [10]
2‴-O-(Z)-p-coumaroyl-caryocanoside B (Figure 5) Caryopteris incana (Thunb. ex Houtt.) Miq. Whole plant China SE, PP, CC, p-HPLC-UV, α[D], IR, NMR, HR-MS [10]
3″-glucosyl-depresteroside (Figure 10) Gentiana depressa D.Don Aerial parts Nepal DP, SE, PP, CC, CCTLC, sp-HPLC-UV, UV, NMR, MS [14]
(Z)-aldosecologanin (Figure 17) Lonicera japonica Thunb. Stems and leaves Japan (purchased from a company) SE, PP, CC, p-HPLC-UV, α[D], UV, NMR, HR-MS [13]
Flower buds China HSE, CC, p-HPLC-UV, NMR [15]
China (purchased from a company) SE, PP, CC, sp-HPLC-UV, NMR [16]
China (different populations) USE, HPLC-MSn [17]
SE, HPLC-PDA [18]
China (different populations) USE, UHPLC-MSn [19]
Aerial parts China (cultivated) USE, UHPLC-MSn [20]
Roots China (cultivated) USE, UHPLC-MSn [20]
Flowers China (different populations) USE, UHPLC-MSn [19]
Stems China (different populations) USE, UHPLC-MSn [19]
Leaves China (different populations) USE, UHPLC-MSn [19]
Lonicera ferdinandi Franch. Aerial parts China (cultivated) USE, UHPLC-MSn [20]
Roots China (cultivated) USE, UHPLC-MSn [20]
Lonicera maximowiczii subsp. sachalinensis (Fr.Schmidt) Nedol. Aerial parts China (cultivated) USE, UHPLC-MSn [20]
Roots China (cultivated) USE, UHPLC-MSn [20]
Lonicera maackii (Rupr.) Maxim. Aerial parts China (cultivated) USE, UHPLC-MSn [20]
Roots China (cultivated) USE, UHPLC-MSn [20]
Lonicera morrowii A.Gray Aerial parts China (cultivated) USE, UHPLC-MSn [20]
Roots China (cultivated) USE, UHPLC-MSn [20]
Lonicera praeflorens Batalin Aerial parts China (cultivated) USE, UHPLC-MSn [20]
Roots China (cultivated) USE, UHPLC-MSn [20]
Abeliforoside A (Figure 35) Abelia grandiflora (Rovelli ex André) Rehder Flower buds China SE, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [21]
Abeliforoside B (Figure 35) Abelia grandiflora (Rovelli ex André) Rehder Flower buds China SE, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [21]
Abeliforoside C (Figure 30) Abelia grandiflora (Rovelli ex André) Rehder Flower buds China SE, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [21]
Abeliforoside D (Figure 30) Abelia grandiflora (Rovelli ex André) Rehder Flower buds China SE, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [21]
Abeliforoside E (Figure 30) Abelia grandiflora (Rovelli ex André) Rehder Flower buds China SE, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [21]
Abeliforoside F (Figure 30) Abelia grandiflora (Rovelli ex André) Rehder Flower buds China SE, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [21]
Abelioside A (Figure 30) Abelia grandiflora (Rovelli ex André) Rehder Leaves Japan HSE, PP, ACT, CC, p-TLC, α[D], IR, UV, NMR [22]
Picrorhiza kurroa Royle ex Benth. Stems Myanmar USE, PP, CC, sp-HPLC-UV, NMR [23]
Abelioside A methyl acetal (Figure 30) Abelia grandiflora (Rovelli ex André) Rehder Leaves Japan HSE, PP, ACT, CC, p-TLC, α[D], IR, UV, NMR [22]
Pterocephalus hookeri (C.B.Clarke) E.Pritz. Whole plant Tibet SE, PP, CC, sp-HPLC-UV, NMR [24]
Abelioside B (Figure 30) Picrorhiza kurroa Royle ex Benth. Stems Myanmar USE, PP, CC, sp-HPLC-UV, NMR [23]
Abelia grandiflora (Rovelli ex André) Rehder Leaves Japan HSE, PP, ACT, CC, p-TLC, α[D], IR, UV, NMR [22]
Adinoside D (Figure 16) Adina racemosa (Siebold & Zucc.) Miq. Leaves, flowers and twigs Taiwan (obtained from a botanical garden) HSE, PP, CC, rp-MPLC, p-HPLC-UV, p-TLC, α[D], IR, UV, NMR, HR-MS [25]
Adinoside E (Figure 16) Adina racemosa (Siebold & Zucc.) Miq. Leaves, flowers and twigs Taiwan (obtained from a botanical garden) HSE, PP, CC, rp-MPLC, p-HPLC-UV, p-TLC, α[D], IR, UV, NMR, HR-MS [25]
Alatenoside (Figure 21) Sarracenia alata (Alph.Wood) Alph.Wood Whole plant USA SE, PP, p-rp-HPLC-UV, HPLC-ELSD, α[D], UV, NMR, HR-MS [26]
Alatinoside (Figure 21) Sarracenia alata (Alph.Wood) Alph.Wood Whole plant USA SE, PP, p-rp-HPLC-UV, HPLC-ELSD, α[D], UV, NMR, HR-MS [26]
Aldosecolohanin B (Figure 19) Lonicera japonica Thunb. Flower buds China (purchased from a company) SE, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [16]
Aldosecolohanin C (Figure 19) Lonicera japonica Thunb. Flower buds China (purchased from a company) SE, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [16]
Alidyjosioside (Figure 31) Scaevola taccada (Gaertn.) Roxb. Leaves Egypt (obtained from a botanical garden) SE, PP, VLC, CC, MP, NMR, [27]
Arcusangeloside (Figure 34) Linaria arcusangeli Atzei & Camarda Whole plant Italy SE, ACT, CC, α[D], IR, UV, NMR, MS [28]
Linaria flava subsp. sardoa (Sommier) Arrigoni Whole plant Italy SE, ACT, CC, α[D], IR, UV, NMR, MS [28]
Argylioside (Figure 1) Argylia radiata (L.) D.Don Whole plant Chile SE, ACT, CC, rp-LPLC, α[D], IR, UV, NMR [29]
SE, CC, NMR [30]
Asaolaside (Figure 30) Loasa acerifolia Dombey ex A.Juss. Leaves Germany (obtained from a botanical garden) SXE, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, MS [31]
Asperuloide A (Figure 29) Galium maximowiczii (Kom.) Pobed. Whole plant South Korea SE, PP, CC, p-HPLC-UV, α[D], IR, UV, NMR, MS [32]
Asperuloide B (Figure 29) Galium maximowiczii (Kom.) Pobed. Whole plant South Korea SE, PP, CC, p-HPLC-UV, α[D], IR, UV, NMR, MS [32]
Asperuloide C (Figure 34) Galium maximowiczii (Kom.) Pobed. Whole plant South Korea SE, PP, CC, p-HPLC-UV, α[D], IR, UV, NMR, MS [32]
Asperulosidyl-2’b-O-paederoside (Figure 4) Paederia foetida L. Aerial parts China SER, CC, sp-HPLC-UV, α[D], IR, NMR, HR-MS [33]
Atropurpurin A (Figure 9) Scabiosa atropurpurea L. Whole plant Turkey SE, CC, sp-HPLC-UV, HPLC-MSn, NMR [34]
Atropurpurin B (Figure 9) Scabiosa atropurpurea L. Whole plant Turkey SE, CC, sp-HPLC-UV, HPLC-MSn, NMR [34]
Austrosmoside (Figure 23) Osmanthus austrocaledonicus (Vieill.) Knobl. Aerial parts New Caledonia DP, CC, CC, VLC, α[D], UV, NMR, HR-MS [35]
Axillaroside (Figure 9) Strychnos axillaris Colebr. Bark and wood Thailand SER, PP, rp-MPLC, p-HPLC-UV, α[D], IR, NMR, HR-MS [36]
Blumeoside B (Figure 8) Fagraea blumei G.Don Stem bark Indonesia SE, CC, CPC, HPLC-DAD, α[D], IR, NMR, MS [37]
Blumeoside D (Figure 8) Fagraea blumei G.Don Stem bark Indonesia SE, CC, CPC, HPLC-DAD, α[D], IR, NMR, MS [37]
Caeruleoside A (Figure 11) Lonicera caerulea L. Leaves Japan SE, PP, CC, p-HPLC-UV, α[D], IR, UV, NMR, MS [38]
Caeruleoside B (Figure 18) Lonicera caerulea L. Leaves Japan SE, PP, CC, p-HPLC-UV, α[D], IR, UV, NMR, MS [38]
Cantleyoside (Figure 9) Cantleya corniculata (Becc.) R.A.Howard n.a. n.a. n.a. [39]
Scabiosa japonica Miq. Roots Japan HSE, PP, CC, MP, α[D], IR, UV, NMR [40]
Dipsacus fullonum L. Seeds Denmark SE, p-TLC, α[D], UV, NMR [41]
Leaves Poland USE, UHPLC-PDA-MSn [42]
Roots Poland USE, UHPLC-PDA-MSn [42]
Abelia grandiflora (Rovelli ex André) Rehder Leaves Japan HSE, PP, ACT, CC, p-TLC, PLC, NMR [22]
Linnaea spathulata Graebn. Leaves Japan SE, ACT, p-TLC, NMR [22]
Linnaea serrata Graebn. Leaves Japan SE, ACT, p-TLC, NMR [22]
Scaevola montana Labill. Aerial parts New Caledonia SE, CC, NMR [43]
Scaevola racemigera Däniker Aerial parts New Caledonia SE, CC, NMR [44]
Dipsacus laciniatus L. Roots Hungary SE, PP, CCD, CC, α[D], IR, UV, NMR [45]
Cephalaria ambrosioides (Sm.) Roem. & Schult. Roots Greece SE, PP, CC, rp-CC, NMR [46]
Lomelosia variifolia (Boiss.) Greuter & Burdet Flowering aerial parts Greece SE, VLC, rp-MPLC, NMR, MS [47]
Dipsacus inermis Wall. Roots China HSE, PP, CC, rp-CC, p-TLC, rp-HPLC-UV, NMR [48]
SER, PP, CC, NMR [49]
China (purchased from a company) SER, PP, MPLC, p-TLC, NMR [50]
Dried Roots China (purchased from a company) USE, HPLC-MSn [51]
China (different populations) SE, CC, UHPLC-PDA, UHPLC-MSn [52]
Strychnos spinosa Lam. Branches Japan (cultivated) HSE, PP, rp-MPLC, p-HPLC-UV, p-TLC, NMR [53]
Strychnos lucida R.Br. Bark and wood Thailand HSE, PP, MPLC, rp-MPLC, p-HPLC-UV, NMR [54]
Strychnos axillaris Colebr. Bark and wood Thailand SER, PP, rp-MPLC, p-HPLC-UV, NMR [36]
Pterocephalus pinardi Boiss. Aerial parts Turkey SE, PP, rp-VLC, CC, MPLC, NMR [55]
Cephalaria kotschyi Boiss. & Hohen. Dried roots Azerbaijan SE, FC, LPLC, NMR [56]
Cephalaria media Litv. Dried roots Azerbaijan SE, CC, rp-CC, TLC, NMR [57]
Pterocephalus hookeri (C.B.Clarke) E.Pritz. Underground parts Tibet SER, PP, CC rp-CC, NMR [58]
SER, PP, TLC, sp-HPLC-MS, NMR [59]
n.a. n.a. n.a. [60]
Whole plant China SE, PP, CC, rp-CC, NMR [61]
SE, PP, HPLC-UV [62]
SER, CC, UPLC-PDA [63]
USE, UPLC-MSn [64]
Tibet SE, PP, CC, p-HPLC-UV, p-TLC, NMR [65]
Tibet SE, PP, CC, sp-HPLC-UV, NMR [24]
China (different populations) USE, UPLC-MSn [66]
Pterocephalus nestorianus Nábelek Roots Iraq DP, SE, PP, MPLC, p-TLC, NMR [67]
Scabiosa atropurpurea L. Roots Turkey HSE, rp-CC, CC, NMR, MS [68]
Whole plant SE, CC, sp-HPLC-UV, HPLC-MSn [34]
Leaves Tunisia SE, DP, HPLC-MSn [69]
Cantleyoside dimethyl acetal (Figure 9) Scaevola montana Labill. Aerial parts New Caledonia SE, CC, NMR [43]
Pterocephalus pterocephalus (L.) Dörfl. Aerial parts Greece SE, CC, rp-CC, α[D], NMR, MS [70]
Pterocephalus pinardi Boiss. Aerial parts Turkey SE, PP, rp-VLC, CC, MPLC, NMR [55]
Scabiosa atropurpurea L. Whole plant Turkey SE, CC, sp-HPLC-UV, HPLC-MSn, NMR [34]
Caryocanoside B (Figure 5) Caryopteris incana (Thunb. ex Houtt.) Miq. Whole plant China SE, PP, CC, p-TLC, α[D], IR, NMR, HR-MS [10]
Centauroside (Figure 21) Centaurium erythraea Rafn n.a. n.a. n.a. [71]
Lonicera japonica Thunb. Stems and leaves Japan (purchased from a company) SE, PP, VV, p-HPLC-UV, α[D], UV, NMR, HR-MS [13]
Dried flowers South Korea (different populations) USE, HPLC-UV [72]
South Korea (different commercial samples) USE, HPLC-UV
Caulis China (different populations) USE, UFLC-MSn [73]
China (samples purchased from different companies) USE, UFLC-MSn
Flowers China (different populations) USE, UFLC-MSn [73]
China (samples purchased from different companies) USE, UFLC-MSn
China (different populations) USE, UHPLC-MSn [19]
Flower buds China SER, HPLC-MSn [74]
China DP, SER, HPLC-DAD-MSn [75]
SER, HPLC-MS [76]
China (different cultivated populations) USE, HPLC-DAD-ELSD [77]
China (commercial samples) USE, HPLC-DAD-ELSD [77]
SE, HPLC-DAD, HPLC-MS [78]
China and Korea (commercial samples) SE, HPLC-DAD-MS [79]
China n.a. [80]
HSE, CC, p-HPLC-UV, NMR [15]
USE, HPLC-DAD-CL, HPLC-DAD-MSn [81]
China (different populations) USE, HPLC-MSn [17]
HSE, UHPLC-UV [82]
USE, UFLC-MSn [73]
SE, HPLC-PDA [18]
USE, UHPLC-MSn [19]
China (purchased from a company) USE, rp-UHPLC-PDA-MSn [83]
USE, 2D-HPLC-UF-MS [84]
SE, PP, CC, sp-HPLC-UV, NMR [16]
China (samples purchased from different companies) USE, UFLC-MSn [73]
China (cultivated) USE, UPLC-MSn [85]
Leaves South Korea (different populations) USE, HPLC-UV [72]
China (purchased from a company) USE, HPLC-DAD-MSn [86]
China USE, rp-UHPLC-PDA-MSn [83]
China (different populations) USE, UFLC-MSn [73]
USE, UHPLC-MSn [19]
China (cultivated) USE, UPLC-MSn [85]
Aerial parts China (cultivated) USE, UHPLC-MSn [20]
Roots China (cultivated) USE, UHPLC-MSn [20]
Stems China USE, rp-UHPLC-PDA-MSn [83]
China (different populations) USE, UHPLC-MSn [19]
Branches China (cultivated) USE, UPLC-MSn [85]
Fruits China (cultivated) USE, UPLC-MSn [85]
Kissenia capensis Endl. Aerial parts Namibia SE, PP, CC, rp-CC, sp-rp-HPLC-UV, NMR, MS [87]
Strychnos spinosa Lam. Branches Japan (cultivated) HSE, PP, rp-MPLC, p-HPLC-UV, p-TLC, NMR [53]
Lonicera confusa DC. Flower buds China (different cultivated populations) USE, HPLC-DAD-ELSD [77]
China DP, SER, HPLC-DAD-MSn [75]
China
(different populations)
SER, HPLC-MS [76]
Dried flowers South Korea (different populations) USE, HPLC-UV [72]
South Korea (different commercial samples) USE, HPLC-UV [72]
Lonicera ferdinandi Franch. Aerial parts China (cultivated) USE, UHPLC-MSn [20]
Roots China (cultivated) USE, UHPLC-MSn [20]
Lonicera hypoglauca Miq. Flower buds China (different cultivated populations) USE, HPLC-DAD-ELSD [77]
China DP, SER, HPLC-DAD-MSn [75]
SER, HPLC-MS [76]
Lonicera macrantha Spreng. Flower buds China (different cultivated populations) USE, HPLC-DAD-ELSD [77]
China (different populations) DP, SER, HPLC-DAD-MSn [75]
SER, HPLC-MS [76]
HSE, UHPLC-UV [82]
Lonicera maackii (Rupr.) Maxim. Aerial parts China (cultivated) USE, UHPLC-MSn [20]
Roots China (cultivated) USE, UHPLC-MSn [20]
Lonicera maximowiczii subsp. sachalinensis (Fr.Schmidt) Nedol. Aerial parts China (cultivated) USE, UHPLC-MSn [20]
Roots China (cultivated) USE, UHPLC-MSn [20]
Lonicera praeflorens Batalin Aerial parts China (cultivated) USE, UHPLC-MSn [20]
Roots China (cultivated) USE, UHPLC-MSn [20]
Lonicera rupicola var. syringantha (Maxim.) Zabel Flower buds China SER, HPLC-MS [76]
Lonicera similis Hemsl. ex F.B.Forbes & Hemsl. Flower buds China SER, HPLC-MS [76]
Triosteum pinnatifidum Maxim. Roots China SER, PP, CC, NMR [88]
Gentianella amarella subsp. acuta (Michx.) J.M.Gillett Whole plant China SER, PP, CC, p-HPLC-UV, NMR [89]
Lonicera morrowii A.Gray Roots South Korea (obtained from a botanical garden) USE, PP, CC, p-HPLC-UV, NMR [20]
Aerial parts China (cultivated) USE, UHPLC-MSn [20]
Roots China (cultivated) USE, UHPLC-MSn [20]
Centauroside A (Figure 21) Centaurium erythraea Rafn Whole plant Turkey SE, CC, rp-FC, α[D], IR, UV, NMR, HR-MS [90]
Chrysathain (Figure 22) Lonicera chrysantha Turcz. ex Ledeb. Leaves China SE, CC, α[D], NMR, HR-MS [91]
Citrifolinin A-1 (Figure 6) Morinda citrifolia L. Leaves India HSE, PP, CC, rp-CC, NMR, MS [92]
Cocculoside (Figure 9) Strychnos cocculoides Baker Stem bark Tanzania SE, VLC, CC, α[D], IR, UV, NMR, MS [93]
Dipsacus inermis Wall. Roots China (purchased from a local market) SE, PP, CC, rp-CC, sp-HPLC-UV, NMR [94]
Coelobillardin (Figure 8) Coelospermum balansanum Baill. Aerial parts New Caledonia SE, CC, MPLC, α[D], IR, UV, NMR, HR-MS [95]
Coptosapside A (Figure 31) Coptosapelta diffusa (Champ. ex Benth.) Steenis Aerial parts China SE, PP, MPLC, CC, α[D], IR, UV, NMR, HR-MS [96]
Coptosapside D (Figure 14) Coptosapelta diffusa (Champ. ex Benth.) Steenis Aerial parts China SE, PP, MPLC, CC, α[D], IR, UV, NMR, HR-MS [96]
Coptosapside E (Figure 14) Coptosapelta diffusa (Champ. ex Benth.) Steenis Aerial parts China SE, PP, MPLC, CC, α[D], IR, UV, NMR, HR-MS [96]
Coptosapside F (Figure 14) Coptosapelta diffusa (Champ. ex Benth.) Steenis Aerial parts China SE, PP, MPLC, CC, α[D], IR, UV, NMR, HR-MS [96]
Cornuofficinaliside C (Figure 13) Cornus officinalis Siebold & Zucc. Fruits China SE, CC, PP, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [97]
Cornuofficinaliside D (Figure 13) Cornus officinalis Siebold & Zucc. Fruits China SE, CC, PP, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [97]
Cornuofficinaliside E (Figure 13) Cornus officinalis Siebold & Zucc. Fruits China SE, CC, PP, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [97]
Cornuofficinaliside F (Figure 13) Cornus officinalis Siebold & Zucc. Fruits China SE, CC, PP, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [97]
Cornuofficinaliside G (Figure 13) Cornus officinalis Siebold & Zucc. Fruits China SE, CC, PP, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [97]
Cornuofficinaliside H (Figure 13) Cornus officinalis Siebold & Zucc. Fruits China SE, CC, PP, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [97]
Cornuofficinaliside I (Figure 13) Cornus officinalis Siebold & Zucc. Fruits China SE, CC, PP, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [97]
Cornuofficinaliside J (Figure 26) Cornus officinalis Siebold & Zucc. Fruits China SE, CC, PP, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [97]
Cornuofficinaliside K (Figure 26) Cornus officinalis Siebold & Zucc. Fruits China SE, CC, PP, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [97]
Cornuofficinaliside L (Figure 26) Cornus officinalis Siebold & Zucc. Fruits China SE, CC, PP, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [97]
Cornuofficinaliside M (Figure 26) Cornus officinalis Siebold & Zucc. Fruits China SE, CC, PP, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [97]
Cornusdiridoid A (Figure 25) Cornus officinalis Siebold & Zucc. Fruits China HSE, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [98]
China (purchased from a local market) SER, PP, CC, sp-HPLC-UV, NMR [99]
Cornusdiridoid B (Figure 25) Cornus officinalis Siebold & Zucc. Fruits China HSE, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [98]
Cornusdiridoid C (Figure 25) Cornus officinalis Siebold & Zucc. Fruits China HSE, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [98]
Cornusdiridoid D (Figure 25) Cornus officinalis Siebold & Zucc. Fruits China HSE, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [98]
Cornusdiridoid E (Figure 26) Cornus officinalis Siebold & Zucc. Fruits China HSE, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [98]
Cornusdiridoid F (Figure 26) Cornus officinalis Siebold & Zucc. Fruits China HSE, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [98]
Cornuside A (Figure 24) Cornus officinalis Siebold & Zucc. Fruits China SER, CC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [99]
China (purchased from a local market) SER, PP, CC, sp-HPLC-UV, NMR [100]
China (different populations purchased from a company) HSE, UHPLC-MSn [101]
Cornuside B (Figure 24) Cornus officinalis Siebold & Zucc. Fruits China SER, CC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [99]
Cornuside C (Figure 24) Cornus officinalis Siebold & Zucc. Fruits China SER, CC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [99]
Cornuside D (Figure 24) Cornus officinalis Siebold & Zucc. Fruits China SER, CC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [99]
Cornuside E (Figure 24) Cornus officinalis Siebold & Zucc. Fruits China SER, CC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [99]
China (purchased from a local market) SER, PP, CC, sp-HPLC-UV, NMR [100]
China (different populations purchased from a company) HSE, UHPLC-MSn [101]
Cornuside F (Figure 24) Cornus officinalis Siebold & Zucc. Fruits China SER, CC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [99]
Cornuside G (Figure 24) Cornus officinalis Siebold & Zucc. Fruits China SER, CC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [99]
Cornuside H (Figure 24) Cornus officinalis Siebold & Zucc. Fruits China SER, CC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [99]
Cornuside I (Figure 24) Cornus officinalis Siebold & Zucc. Fruits China SER, CC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [99]
Cornuside J (Figure 24) Cornus officinalis Siebold & Zucc. Fruits China SER, CC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [99]
Cornuside K (Figure 24) Cornus officinalis Siebold & Zucc. Fruits China SER, CC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [99]
China (purchased from a local market) SER, PP, CC, sp-HPLC-UV, NMR [100]
Cornuside L (Figure 12) Cornus officinalis Siebold & Zucc. Fruits China SER, CC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [99]
China (different populations purchased from a company) HSE, UHPLC-MSn [101]
Cornuside M (Figure 12) Cornus officinalis Siebold & Zucc. Fruits China SER, CC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [99]
China (different populations purchased from a company) HSE, UHPLC-MSn [101]
Cornuside N (Figure 12) Cornus officinalis Siebold & Zucc. Fruits China SER, CC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [99]
China (different populations purchased from a company) HSE, UHPLC-MSn [101]
Cornuside O (Figure 12) Cornus officinalis Siebold & Zucc. Fruits China SER, CC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [99]
China SE, CC, PP, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [97]
Craigoside B (Figure 22) Jasminum abyssinicum Hochst. ex DC. Root bark Congo SE, PP, CCD, α[D], UV, CD, NMR, HR-MS [102]
Craigoside C (Figure 22) Jasminum abyssinicum Hochst. ex DC. Root bark Congo SE, PP, CCD, α[D], UV, CD, NMR, HR-MS [102]
Demethyl-hydroxy-oleonuezhenide Syringa vulgaris L. Flowers Poland HSE, CC, p-HPLC-UV, α[D], UV, NMR, HR-MS [103]
Demethyl-oleonuezhenide Syringa vulgaris L. Flowers Poland HSE, CC, p-HPLC-UV, α[D], UV, NMR, HR-MS [103]
Depresteroside (Figure 10) Gentiana depressa D.Don Aerial parts Nepal DP, SE, PP, CC, CCTLC, UV, NMR, MSn [104]
Dioscoridin C (Figure 5) Valeriana italica Lam. Roots Turkey HSE, PP, CC, MPLC, α[D], IR, UV, NMR, HR-MS [105]
Dipsanoside C (Figure 10) Dipsacus inermis Wall. Dried roots China HSE, PP, CC, rp-CC, p-TLC, rp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [48]
Dipsanoside D (Figure 10) Dipsacus inermis Wall. Dried roots China HSE, PP, CC, rp-CC, p-TLC, rp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [48]
Dipsanoside E (Figure 10) Dipsacus inermis Wall. Dried roots China HSE, PP, CC, rp-CC, p-TLC, rp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [48]
Dipsanoside F (Figure 11) Dipsacus inermis Wall. Dried roots China HSE, PP, CC, rp-CC, p-TLC, rp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [48]
Dipsanoside G (Figure 31) Dipsacus inermis Wall. Dried roots China HSE, PP, CC, rp-CC, p-TLC, rp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [48]
Dipsanoside J (Figure 10) Dipsacus inermis Wall. Dried roots China HSE, PP, CC, p-TLC, p-rp-HPLC-UV, α[D], IR, NMR, HR-MS [106]
Dipsanoside M (Figure 11) Dipsacus inermis Wall. Dried roots China SER, CC, rp-CC, rp-FC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [107]
Dipsanoside N (Figure 11) Dipsacus inermis Wall. Dried roots China SER, CC, rp-CC, rp-FC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [107]
Dipsaperine (Figure 11) Dipsacus inermis Wall. Roots China (purchased from a local market) SE, PP, CC, rp-CC, sp-HPLC-UV, α[D], IR, UV, ECD, NMR, HR-MS [94]
SER, PP, MPLC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [108]
Disperoside A (Figure 7) Gardenia jasminoides J.Ellis Fruits China SE, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [109]
Disperoside B (Figure 7) Gardenia jasminoides J.Ellis Fruits China SE, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [109]
Floribundal (Figure 28) Scaevola floribunda A.Gray Heartwood Japan SXE, PP, VLC, MP, α[D], IR, UV, NMR, MS [110]
Fraximalacoside (Figure 18) Fraxinus malacophylla Hemsl. Leaves China (obtained from a botanical garden) HSE, PP, CC, HPLC-UV, α[D], IR, UV, NMR, MS [111]
Fraxinus mandshurica Rupr. Whole plant China (different populations) USE, HPLC-DAD, UPLC-MS [112]
GI-3 (Figure 17) Fraxinus americana L. Seeds USA SE, PP, CC, MP, α[D], TLC [113]
Leaves SE, CC, TLC, IR, UV, NMR [114]
Fraxinus excelsior L. Seeds USA SE, PP, CC, MP, α[D], TLC [113]
Morocco HSE, PP, CC, HPLC-UV, NMR [115]
Fraxinus ornus L. Seeds USA SE, PP, CC, MP, α[D], TLC [113]
Fraxinus pennsylvanica Marshall Seeds USA SE, PP, CC, MP, α[D], TLC [113]
Olea europaea L. Seeds USA SE, PP, CC, MP, α[D], TLC [113]
Syringa vulgaris L. Seeds USA SE, PP, CC, MP, α[D], TLC [113]
Ligustrum lucidum W.T.Aiton Dried fruits China SE, PP, CC, p-HPLC-UV, NMR [116]
SER, PP, CC, NMR [117]
USE, UHPLC-MSn [118]
Fruits SER, PP, CC, p-HPLC-UV, MP, α[D], IR, UV, NMR, HR-MS [119]
Osmanthus fragrans Lour. Seeds China SE, PP, CC, NMR [120]
Ligustrum japonicum Thunb. Fruits South Korea SER, PP, CC, α[D], IR, UV, NMR, HR-MS [121]
Dried fruits South Korea SE, PP, CC, rp-HPLC-UV, NMR, MS [122]
Fraxinus mandshurica Rupr. Seeds China (purchased from a company) SE, PP, CC, HPLC-DAD, NMR [123]
GI-5 (Figure 17) Fraxinus americana L. Seeds USA SE, PP, CC, MP, α[D], TLC [113]
Leaves SE, CC, TLC, IR, UV, NMR [114]
Fraxinus excelsior L. Seeds USA SE, PP, CC, MP, α[D], TLC [113]
Morocco HSE, PP, CC, HPLC-UV, NMR [115]
Fraxinus ornus L. Seeds USA SE, PP, CC, MP, α[D], TLC [113]
Fraxinus pennsylvanica Marshall Seeds USA SE, PP, CC, MP, α[D], TLC [113]
Olea europaea L. Seeds USA SE, PP, CC, MP, α[D], TLC [113]
Syringa vulgaris L. Seeds USA SE, PP, CC, MP, α[D], TLC [113]
Jasminum polyanthum Franch. Flowers China (purcahsed from a company) HSE, PP, CC, p-HPLC, α[D], IR, UV, NMR, HR-MS [124]
Fraxinus mandshurica Rupr. Seeds China (purchased from a company) SE, PP, CC, HPLC-DAD, NMR [123]
Globuloside A (Figure 7) Globularia trichosantha Fisch. & C.A.Mey. Underground parts Turkey HSE, PP, rp-VLC, CC, MPLC, α[D], IR, NMR, MS [125]
Globularia meridionalis (Podp.) O.Schwarz Aerial parts Italy SE, PP, CC, NMR [126]
Globularia alypum L. Aerial parts Croatia SER, HPLC-PDA, HPLC-PDA-MSn [127]
Leaves Croatia USE, HPLC-PDA-MSn [128]
SXE, HPLC-PDA-MSn
Globuloside B (Figure 6) Globularia trichosantha Fisch. & C.A.Mey. Underground parts Turkey HSE, PP, rp-VLC, CC, MPLC, α[D], IR, UV, NMR, MS [125]
Globularia meridionalis (Podp.) O.Schwarz Aerial parts Italy SE, PP, CC, NMR [126]
Globuloside C (Figure 11) Globularia cordifolia L. Roots and rhizomes Turkey HSE, PP, VLC, MPLC, CC, α[D], IR, UV, NMR, HR-MS [129]
Hookerinoid A (Figure 28) Pterocephalus hookeri (C.B.Clarke) E.Pritz. Underground parts China SER, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [130]
Hookerinoid B (Figure 28) Pterocephalus hookeri (C.B.Clarke) E.Pritz. Underground parts China SER, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [130]
Hydroxy-oleonuezhenide Syringa vulgaris L. Flowers Poland HSE, CC, p-HPLC-UV, α[D], UV, NMR, HR-MS [103]
Ilicifolioside A (Figure 19) Osmanthus heterophyllus (G.Don) P.S.Green Leaves Japan SE, PP, CC, p-HPLC-UV, α[D], UV, NMR, HR-MS [131]
Ilicifolioside B (Figure 22) Osmanthus heterophyllus (G.Don) P.S.Green Leaves Japan SE, PP, CC, p-HPLC-UV, α[D], UV, NMR, HR-MS [131]
Incaside (Figure 29) Mussaenda incana Wall. Stem bark n.a. n.a. [132]
Iridolinarin A (Figure 29) Linaria japonica Miq. Whole plant Japan SE, PP, CC, α[D], IR, UV, NMR, HR-MS [133]
Iridolinarin B (Figure 33) Linaria japonica Miq. Whole plant Japan SE, PP, CC, α[D], IR, UV, NMR, HR-MS [133]
Iridolinarin C (Figure 29) Linaria japonica Miq. Whole plant Japan SE, PP, CC, α[D], IR, UV, NMR, HR-MS [133]
Iso-jaspolyoside A (Figure 17) Jasminum polyanthum Franch. Flowers China (purcahsed from a company) HSE, PP, CC, p-TLC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [134]
Olea europaea L. Wood Spain SER, CC, rp-HPLC-DAD, NMR [135]
Spain (different populations) SE, HPLC-DAD, HPLC-DAD-MS [136]
Iso-jaspolyoside B (Figure 18) Jasminum polyanthum Franch. Flowers China (purcahsed from a company) HSE, PP, CC, p-TLC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [134]
Iso-jaspolyoside C (Figure 18) Jasminum polyanthum Franch. Flowers China (purcahsed from a company) HSE, PP, CC, p-TLC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [134]
Iso-oleonuzhenide (Figure 15) Ligustrum lucidum W.T.Aiton Dried fruits China SE, PP, CC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [116]
Ligustrum japonicum Thunb. Fruits South Korea SER, PP, CC, rp-CC, α[D], IR, UV, NMR, HR-MS [121]
Fraxinus mandshurica Rupr. Seeds China (purchased from a company) SE, PP, CC, HPLC-DAD, NMR [123]
Japonicoside E (Figure 33) Lonicera japonica Thunb. Flower buds China (purchased from a company) SER, CC, p-HPLC-UV, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [137]
Jasmigeniposide B (Figure 1) Gardenia jasminoides J.Ellis Fruits China (purchased from a company) SER, PP, CC, rp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [138]
Jasnervoside F (Figure 20) Jasminum nervosum Lour. Stems China (purchased from a local market) SER, PP, CC, α[D], IR, UV, NMR, HR-MS [139]
Jasnudifloside D (Figure 14) Jasminum nudiflorum Lindl. Stems Japan (obtained from a botanical garden) HSE, PP, CC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [140]
Jasnudifloside E (Figure 14) Jasminum nudiflorum Lindl. Stems Japan (obtained from a botanical garden) HSE, PP, CC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [140]
Jasnudifloside H (Figure 14) Jasminum nudiflorum Lindl. Leaves Japan (obtained from a botanical garden) HSE, PP, CC, p-TLC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [141]
Jasnudifloside L (Figure 14) Jasminum nudiflorum Lindl. Leaves Japan (obtained from a botanical garden) HSE, PP, CC, p-TLC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [141]
Jaspolyanoside (Figure 23) Jasminum polyanthum Franch. Flowers China (purcahsed from a company) HSE, PP, CC, p-TLC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [134]
Olea europaea L. Wood Spain SER, CC, rp-HPLC-DAD, NMR [135]
Spain (different populations) SE, HPLC-DAD, HPLC-DAD-MS [136]
Syringa oblata subsp. dilatata (Nakai) P.S.Green & M.C.Chang Twigs South Korea SE, PP, CC, rp-CC, rp-HPLC-UV, NMR [142]
Fraxinus mandshurica Rupr. Seeds China (purchased from a company) SE, PP, CC, HPLC-DAD, NMR [123]
Jaspolyanthoside (Figure 22) Jasminum polyanthum Franch. Flowers China (purcahsed from a company) HSE, PP, CC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [124]
Jasminum nervosum Lour. Stems China (purchased from a local market) SER, PP, CC, α[D], IR, UV, NMR, HR-MS [139]
Jasminum grandiflorum subsp. floribundum (R.Br. ex Fresen.) P.S.Green Aerial parts Saudi Arabia USE, PP, HPLC-DAD, UPLC-HR-MS [143]
Jaspolyoside (Figure 23) Jasminum polyanthum Franch. Flowers China (purchased from a company) HSE, PP, CC, p-HPLC, α[D], IR, UV, NMR, HR-MS [124]
Syringa reticulata (Blume) H.Hara Bark China SE, PP, CC, rp-CC, NMR [144]
Olea europaea L. Wood Spain SER, CC, rp-HPLC-DAD, NMR [135]
Spain (different populations) SE, HPLC-DAD, HPLC-DAD-MS [136]
Syringa oblata subsp. dilatata (Nakai) P.S.Green & M.C.Chang Twigs South Korea SE, PP, CC, rp-CC, rp-HPLC-UV, NMR [142]
Jasuroside A (Figure 20) Jasminum urophyllum Hemsl. Whole plant Taiwan SE, PP, CC, CPC, p-TLC, α[D], IR, UV, NMR, MS [145]
Jasminum nudiflorum Lindl. Leaves and stems Japan (obtained from a botanical garden) HSE, PP, CC, p-TLC, α[D], IR, UV, NMR, HR-MS [146]
Jasuroside C (Figure 20) Jasminum urophyllum Hemsl. Whole plant Taiwan SE, PP, CC, CPC, p-TLC, α[D], IR, UV, NMR, MS [145]
Jasminum nudiflorum Lindl. Leaves and stems Japan (obtained from a botanical garden) HSE, PP, CC, p-TLC, α[D], IR, UV, NMR, HR-MS [146]
Jasuroside G (Figure 20) Jasminum urophyllum Hemsl. Leaves and stems Taiwan SE, PP, CC, rp-CC, α[D], IR, UV, NMR, MS [147]
Kickxin (Figure 1) Kickxia commutata (Bernh. ex Rchb.) Fritsch Flowering aerial parts Bulgaria SE, ACT, CC, α[D], NMR [148]
Kickxia elatine (L.) Dumort. Flowering aerial parts Bulgaria SE, ACT, CC, α[D], NMR [148]
Kickxia spuria (L.) Dumort. Flowering aerial parts Bulgaria SE, ACT, CC, α[D], NMR [148]
Korolkoside (Figure 17) Lonicera korolkowii Stapf Aerial parts Japan (purchased from a company) SE, PP, CC, rp-HPLC-UV, α[D], NMR, HR-MS [149]
Lonicera japonica Thunb. n.a. n.a. n.a. [150]
Kurdnestorianoside (Figure 11) Pterocephalus nestorianus Nábelek Flowers Iraq DP, SE, MPLC, α[D], IR, UV, NMR, HR-MS [67]
Laciniatoside I (Figure 31) Dipsacus laciniatus L. Aerial parts Hungary SE, PP, CCD, CC, α[D], IR, UV, NMR [45]
Cephalaria scoparia Contandr. & Quézel Whole plant Turkey SE, PP, rp-MPLC, MPLC, NMR [151]
Cephalaria gazipashensis Sümbül Aerial parts Turkey SE, PP, DF, rp-VLC, CC, MPLC, NMR [152]
Pterocephalus hookeri (C.B.Clarke) E.Pritz. Underground parts Tibet SER, PP, CC rp-CC, NMR [58]
Underground parts Tibet SER, PP, TLC, sp-HPLC-MS, NMR [59]
n.a. n.a. n.a. [60]
Whole plant China USE, UPLC-MSn [64]
Laciniatoside II (Figure 30) Dipsacus laciniatus L. Aerial parts Hungary SE, PP, CCD, CC, α[D], IR, UV, NMR [45]
Linnaea chinensis A.Braun & Vatke Aerial parts Italy SE, PP, CC, NMR [11]
Dipsacus ferox Loisel. Leaves and branches Italy SE, CC, NMR [153]
Pterocephalus hookeri (C.B.Clarke) E.Pritz. Underground parts Tibet SER, PP, CC rp-CC, NMR [58]
Underground parts Tibet SER, PP, TLC, sp-HPLC-MS, NMR [59]
n.a. n.a. n.a. [60]
Whole plant China SE, PP, HPLC-UV [62]
USE, UPLC-MSn [64]
Tibet SE, PP, CC, sp-HPLC-UV, NMR [24]
Handroanthus impetiginosus (Mart. ex DC.) Mattos Leaves Egypt (obtained from a botanical garden) PE, PP, HPLC-MSn [154]
Laciniatoside III (Figure 29) Dipsacus laciniatus L. Aerial parts Hungary SE, PP, CCD, CC, α[D], IR, UV, NMR [45]
Laciniatoside IV (Figure 30) Dipsacus laciniatus L. Aerial parts Hungary SE, PP, CCD, CC, α[D], IR, UV, NMR [45]
Laciniatoside V (Figure 30) Dipsacus laciniatus L. Flowering aerial parts Hungary SE, CC, CCC, α[D], IR, UV, NMR [155]
Aerial parts SE, PP, CCD, CC, α[D], IR, UV, NMR [45]
Cephalaria balansae Raus Whole plant Turkey USE, PP, HPLC-MSn [156]
Cephalaria elmaliensis Hub.-Mor. & V.A.Matthews Whole plant Turkey USE, PP, HPLC-MSn [156]
Cephalaria isaurica V.A.Matthews Whole plant Turkey USE, PP, HPLC-MSn [156]
Cephalaria scoparia Contandr. & Quézel Whole plant Turkey USE, PP, HPLC-MSn [156]
Cephalaria speciosa Boiss. & Kotschy Whole plant Turkey USE, PP, HPLC-MSn [156]
Cephalaria stellipilis Boiss. Whole plant Turkey USE, PP, HPLC-MSn [156]
Cephalaria sumbuliana Göktürk Whole plant Turkey USE, PP, HPLC-MSn [156]
Scabiosa atropurpurea L. Whole plant Turkey SE, CC, sp-HPLC-UV, HPLC-MSn, NMR [34]
Lasianoside G (Figure 4) Lasianthus verticillatus (Lour.) Merr. Levaes Japan SE, PP, rp-CC, HPLC-UV, α[D], IR, UV, NMR, MS [157]
Lasianoside H (Figure 5) Lasianthus verticillatus (Lour.) Merr. Levaes Japan SE, PP, rp-CC, HPLC-UV, α[D], IR, UV, NMR, MS [157]
Lasianoside I (Figure 5) Lasianthus verticillatus (Lour.) Merr. Levaes Japan SE, PP, rp-CC, HPLC-UV, α[D], IR, UV, NMR, MS [157]
Liguside A (Figure 20) Ligustrum lucidum W.T.Aiton Fruits China SER, PP, CC, p-HPLC-UV, MP, α[D], IR, UV, NMR, HR-MS [119]
Liguside B (Figure 20) Ligustrum lucidum W.T.Aiton Fruits China SER, PP, CC, p-HPLC-UV, MP, α[D], IR, UV, NMR, HR-MS [119]
Ilex pubescens Hook. & Arn. Roots China (purchased from a company) SE, PP, CC, rp-HPLC-UV, NMR, HR-MS [158]
Ligustrinoside (Figure 1) Strychnos lucida R.Br. Wood Indonesia SE, PP, CC, MPLC, α[D], IR, UV, NMR, MS [159]
Lisianthoside (Figure 23) Lisianthius jefensis A.Robyns & T.S.Elias n.r. n.r. SE, CC, sp-HPLC-UV, NMR [160]
Dipsacus inermis Wall. Roots China HSE, PP, CC, rp-CC, p-TLC, rp-HPLC-UV, NMR [48]
Loasafolioside (Figure 30) Loasa acerifolia Dombey ex A.Juss. Leaves Germany (obtained from a botanical garden) SXE, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, MS [161]
Longifloroside (Figure 3) Pedicularis longiflora Rudolph Whole plant China SE, SER, DP, PP, CC, NMR, MS [162]
Minutifloroside (Figure 6) Palicourea minutiflora (Müll.Arg.) C.M.Taylor Leaves and branches Brazil SE, PP, CC, α[D], NMR, HR-MS [163]
Molihuaside A (Figure 16) Jasminum sambac (L.) Aiton Flowers China SER, PP, CC, rp-CC, MP, α[D], IR, UV, NMR, MS [164]
Jasminum flexile Vahl Aerial parts India SE, PP, CC, p-TLC, NMR, MS [165]
Molihuaside C (Figure 16) Jasminum sambac (L.) Aiton Flowers China SER, PP, CC, rp-CC, MP, α[D], IR, UV, NMR, MS [164]
Molihuaside D (Figure 16) Jasminum sambac (L.) Aiton Flowers China SER, PP, CC, rp-CC, MP, α[D], IR, UV, NMR, MS [164]
Leaves and stems Taiwan SE, PP, CC, p-TLC, α[D], NMR [166]
Molihuaside E (Figure 16) Jasminum sambac (L.) Aiton Flowers China SER, PP, CC, rp-CC, MP, α[D], IR, UV, NMR, MS [164]
Neo-cornuside C (Figure 12) Cornus officinalis Siebold & Zucc. Fruits China SER, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [167]
Neo-cornuside D (Figure 23) Cornus officinalis Siebold & Zucc. Fruits China SER, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [167]
Neo-cornuside F (Figure 23) Cornus officinalis Siebold & Zucc. Fruits China (purchased from a local market) SER, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [100]
Neo-polyanoside (Figure 15) Jasminum polyanthum Franch. Flowers China (purcahsed from a company) HSE, PP, CC, p-TLC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [168]
Nudifloside A (Figure 14) Jasminum nudiflorum Lindl. Stems Japan (obtained from a botanical garden) HSE, PP, CC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [140]
Nudifloside B (Figure 14) Jasminum nudiflorum Lindl. Stems Japan (obtained from a botanical garden) HSE, PP, CC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [140]
Officinaloside A (Figure 21) Cornus officinalis Siebold & Zucc. Twigs China SE, PP, CC, rp-CC, HPLC-UV, α[D], IR, UV, NMR, HR-MS [169]
Oleoneonuezhenide Syringa vulgaris L. Bark Poland HSE, HPLC-DAD-MSn [170]
Oleonuezhenide (Figure 15) Ligustrum japonicum Thunb. Fruits Japan (purchased from a company) SE, PP, CC, rp-CC, α[D], IR, UV, NMR, MS [171]
Leaves South Korea USE, PP, CC, rp-CC, sp-HPLC-UV, NMR [172]
Ligustrum obtusifolium Siebold & Zucc. Leaves n.a. n.a. [173]
Ligustrum lucidum W.T.Aiton Fruits China SER, PP, CC, p-HPLC-UV, MP, α[D], IR, UV, NMR, HR-MS [119]
Dried fruits SE, PP, CC, NMR [116]
n.a. n.a. [174]
China USE, UHPLC-MSn [113]
China (purchased from a company) SE, CC, HPLC-DAD, HPLC-MS [175]
Ilex pubescens Hook. & Arn. Roots China (purchased from a company) SE, PP, CC, rp-HPLC-UV, NMR, HR-MS [158]
Syringa oblata subsp. dilatata (Nakai) P.S.Green & M.C.Chang Twigs South Korea SE, PP, CC, rp-CC, rp-HPLC-UV, NMR [142]
Ligustrum japonicum Thunb. Dried fruits South Korea SE, PP, CC, rp-HPLC-UV, NMR, MS [122]
Syringa vulgaris L. Flowers Poland HSE, CC, p-HPLC-UV, α[D], UV, NMR, HR-MS [103]
Whole plant HSE, HPLC-DAD-MSn [176]
Bark HSE, HPLC-DAD-MSn [170]
Paederoscandoside (Figure 3) Paederia foetida L. n.a. n.a. n.a. [177]
Stems China (purchased from a company) SE, PP, CC, p-HPLC-UV, NMR [178]
Aerial parts China SER, CC, sp-HPLC-UV, NMR [33]
Paederoside B (Figure 7) Paederia foetida L. Stems China SE, PP, CC, rp-CC, HPLC-UV, α[D], IR, UV, NMR, HR-MS [179]
Whole plant SER, PP, HPLC-MSn, HR-MSn [180]
Stems China (purchased from a company) SE, PP, CC, HPLC-MS [178]
Patriscabiobisin A (Figure 34) Patrinia scabiosifolia Link Whole plant China SE, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [181]
Patriscabiobisin B (Figure 34) Patrinia scabiosifolia Link Whole plant China SE, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [181]
Patriscabiobisin C (Figure 27) Patrinia scabiosifolia Link Whole plant China SE, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [181]
SE, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [182]
Phukettoside A (Figure 33) Gynochthodes umbellata (L.) Razafim. & B.Bremer Leaves Thailand SE, CC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [183]
Phukettoside B (Figure 33) Gynochthodes umbellata (L.) Razafim. & B.Bremer Leaves Thailand SE, CC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [183]
Phukettoside C (Figure 33) Gynochthodes umbellata (L.) Razafim. & B.Bremer Leaves Thailand SE, CC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [183]
Phukettoside D (Figure 2) Gynochthodes umbellata (L.) Razafim. & B.Bremer Leaves Thailand SE, CC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [183]
Picconioside I (Figure 7) Picconia excelsa (Aiton) DC. Foliage Spain SE, PP, CC, α[D], NMR [184]
Strychnos lucida R.Br. Bark and wood Thailand HSE, PP, MPLC, rp-MPLC, p-HPLC-UV, NMR [54]
Leonotis nepetifolia (L.) R.Br. Aerial parts Vietnam SE, PP, CC, rp-CC, NMR, MS [185]
Picconioside II (Figure 34) Galium maximowiczii (Kom.) Pobed. Whole plant South Korea SE, PP, CC, p-HPLC-UV, NMR [32]
Picrorhizaoside E (Figure 32) Picrorhiza kurroa Royle ex Benth. Rhizomes China (cultivated) SER, PP, CC, rp-CC, HPLC-UV, α[D], IR, UV, NMR, HR-MS [186]
Picrorhizaoside F (Figure 32) Picrorhiza kurroa Royle ex Benth. Rhizomes China (cultivated) SER, PP, CC, rp-CC, HPLC-UV, α[D], IR, UV, NMR, HR-MS [186]
Picrorhizaoside G (Figure 32) Picrorhiza kurroa Royle ex Benth. Rhizomes China (cultivated) SER, PP, CC, rp-CC, HPLC-UV, α[D], IR, UV, NMR, HR-MS [186]
Polyanoside (Figure 15) Jasminum polyanthum Franch. Flowers China (purcahsed from a company) HSE, PP, CC, p-TLC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [134]
Jasminum sambac (L.) Ait Leaves Egypt (different populations) PE, HPLC-PDA-MSn [187]
Jasminum multiflorum (Burm.f.) Andrews Leaves Egypt PE, PP, VLC, HPLC-PDA-MSn [188]
Premnaodoroside D (Figure 4) Premna odorata Blanco Leaves Japan SE, PP, CC, rp-CC, DCCC, HPLC-UV, α[D], IR, UV, NMR, HR-MS [189]
Leaves Egypt SE, PP, HPLC-MS [190]
Premnaodoroside E (Figure 4) Premna odorata Blanco Leaves Japan SE, PP, CC, rp-CC, DCCC, HPLC-UV, α[D], IR, UV, NMR, HR-MS [189]
Premnaodoroside F Premna odorata Blanco Leaves Japan SE, PP, CC, rp-CC, DCCC, HPLC-UV, α[D], IR, UV, NMR, HR-MS [189]
Premnaodoroside G Premna odorata Blanco Leaves Japan SE, PP, CC, rp-CC, DCCC, HPLC-UV, α[D], IR, UV, NMR, HR-MS [189]
Ptehoside C (Figure 31) Pterocephalus hookeri (C.B.Clarke) E.Pritz. Whole plant Tibet SE, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [24]
Ptehoside D (Figure 31) Pterocephalus hookeri (C.B.Clarke) E.Pritz. Whole plant Tibet SE, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [24]
Ptehoside E (Figure 31) Pterocephalus hookeri (C.B.Clarke) E.Pritz. Whole plant Tibet SE, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [24]
Ptehoside F (Figure 31) Pterocephalus hookeri (C.B.Clarke) E.Pritz. Whole plant Tibet SE, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [24]
Ptehoside G (Figure 31) Pterocephalus hookeri (C.B.Clarke) E.Pritz. Whole plant Tibet SE, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [24]
Ptehoside H (Figure 31) Pterocephalus hookeri (C.B.Clarke) E.Pritz. Whole plant Tibet SE, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [24]
Ptehoside I (Figure 31) Pterocephalus hookeri (C.B.Clarke) E.Pritz. Whole plant Tibet SE, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [24]
Pterhookeroside (Figure 28) Pterocephalus hookeri (C.B.Clarke) E.Pritz. Underground parts Tibet SER, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [191]
Pterocenoid B (Figure 28) Pterocephalus hookeri (C.B.Clarke) E.Pritz. Underground parts Tibet SER, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [192]
Whole plant China SE, PP, CC, rp-CC, HPLC-UV, NMR [193]
Pterocenoid C (Figure 28) Pterocephalus hookeri (C.B.Clarke) E.Pritz. Underground parts Tibet SER, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [192]
Pterocenoid D (Figure 28) Pterocephalus hookeri (C.B.Clarke) E.Pritz. Underground parts Tibet SER, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [192]
Pterocenoid E (Figure 28) Pterocephalus hookeri (C.B.Clarke) E.Pritz. Whole plant China SE, PP, CC, rp-CC, HPLC-UV, α[D], UV, NMR, HR-MS [193]
Pterocenoid F (Figure 28) Pterocephalus hookeri (C.B.Clarke) E.Pritz. Whole plant China SE, PP, CC, rp-CC, HPLC-UV, α[D], UV, NMR, HR-MS [193]
Pterocenoid G (Figure 33) Pterocephalus hookeri (C.B.Clarke) E.Pritz. Whole plant China SE, PP, CC, rp-CC, HPLC-UV, α[D], UV, NMR, HR-MS [193]
Pterocenoid H (Figure 28) Pterocephalus hookeri (C.B.Clarke) E.Pritz. Whole plant China SE, PP, CC, rp-CC, HPLC-UV, α[D], UV, NMR, HR-MS [193]
Pterocephaline (Figure 11) Pterocephalus pinardi Boiss. Aerial parts Turkey SE, PP, rp-VLC, CC, α[D], IR, NMR, HR-MS [55]
Pterocephalus hookeri (C.B.Clarke) E.Pritz. Whole plant China USE, UPLC-MSn [64]
Dipsacus inermis Wall. Roots China HSE, PP, CC, p-TLC, p-rp-HPLC-UV, NMR [106]
China (purchased from a local market) SER, PP, MPLC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [108]
Pteroceside A (Figure 9) Pterocephalus hookeri (C.B.Clarke) E.Pritz. Underground parts Tibet SER, PP, CC, rp-CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [58]
Scabiosa atropurpurea L. Whole plant Turkey SE, CC, sp-HPLC-UV, HPLC-MSn, NMR [34]
Pteroceside B (Figure 9) Pterocephalus hookeri (C.B.Clarke) E.Pritz. Underground parts Tibet SER, PP, CC, rp-CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [58]
Pteroceside C (Figure 9) Pterocephalus hookeri (C.B.Clarke) E.Pritz. Underground parts Tibet SER, PP, CC, rp-CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [58]
Scabiosa atropurpurea L. Whole plant Turkey SE, CC, sp-HPLC-UV, HPLC-MSn, NMR [34]
Pubescensoside (Figure 6) Anarrhinum forskaohlii subsp. pubescens D.A.Sutton Aerial parts Egypt SE, DP, PP, CC, NMR, HR-MS [194]
Pubzenoside (Figure 23) Ilex pubescens Hook. & Arn. Roots China (purchased from a company) SER, PP, CC, rp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [195]
Radiatoside (Figure 1) Argylia radiata (L.) D.Don Whole plant Chile SE, ACT, PC, TLC, CC, α[D], IR, UV, NMR [196]
Radiatoside B (Figure 1) Argylia radiata (L.) D.Don Whole plant Chile SE, ACT, PC, TLC, CC, α[D], IR, UV, NMR [197]
Radiatoside C (Figure 1) Argylia radiata (L.) D.Don Whole plant Chile SE, ACT, PC, TLC, CC, α[D], IR, UV, NMR [197]
Radiatoside D (Figure 1) Argylia radiata (L.) D.Don Whole plant Chile SE, ACT, PC, TLC, α[D], IR, UV, NMR [198]
Radiatoside E (Figure 1) Argylia radiata (L.) D.Don Whole plant Chile SE, CC, α[D], IR, UV, NMR, MS [30]
Radiatoside F (Figure 1) Argylia radiata (L.) D.Don Whole plant Chile SE, CC, α[D], IR, UV, NMR, MS [30]
Randinoside (Figure 1) Catunaregam spinosa (Thunb.) Tirveng. Stems Brazil SE, PP, CC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [199]
Rapulaside A (Figure 34) Heracleum rapula Franch. Roots China SE, PP, CC, p-HPLC-UV, α[D], NMR, MS [200]
Rapulaside B (Figure 34) Heracleum rapula Franch. Roots China SE, PP, CC, p-HPLC-UV, α[D], NMR, MS [200]
Reticunin A (Figure 27) Neonauclea reticulata (Havil.) Merr. Stems Taiwan SE, PP, CC, HPLC-UV, α[D], IR, UV, NMR, HR-MS [201]
Reticunin B (Figure 27) Neonauclea reticulata (Havil.) Merr. Stems Taiwan SE, PP, CC, HPLC-UV, α[D], IR, UV, NMR, HR-MS [201]
Rotunduside (Figure 1) Cyperus rotundus L. Rhizomes China SER, PP, CC, α[D], IR, NMR, HR-MS [202]
Rotunduside A (Figure 2) Cyperus rotundus L. Rhizomes China SER, PP, CC, α[D], IR, NMR, HR-MS [203]
Safghanoside G (Figure 19) Syringa persica L. Leaves Japan (obtained from a botanical garden) HSE, PP, CC, p-TLC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [204]
Fraxinus mandshurica Rupr. Seeds China (purchased from a company) SE, PP, CC, HPLC-DAD, NMR [123]
Safghanoside H (Figure 19) Syringa persica L. Leaves Japan (obtained from a botanical garden) HSE, PP, CC, p-TLC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [204]
Salvialoside E (Figure 28) Salvia digitaloides Diels Roots China SER, PP, CC, α[D], IR, UV, NMR, HR-MS [205]
Saprosmoside A (Figure 6) Saprosma scortechinii King & Gamble Leaves and stems Malaysia SE, PP, CC, α[D], IR, UV, NMR, HR-MS [206]
Saprosmoside B (Figure 5) Saprosma scortechinii King & Gamble Leaves and stems Malaysia SE, PP, CC, α[D], IR, UV, NMR, HR-MS [206]
Saprosmoside C (Figure 3) Saprosma scortechinii King & Gamble Leaves and stems Malaysia SE, PP, CC, α[D], IR, UV, NMR, HR-MS [206]
Saprosmoside D (Figure 3) Saprosma scortechinii King & Gamble Leaves and stems Malaysia SE, PP, CC, α[D], IR, UV, NMR, HR-MS [206]
Paederia foetida L. Stems China (purchased from a company) SE, PP, CC, p-HPLC-UV, NMR [178]
Saprosmoside E (Figure 4) Saprosma scortechinii King & Gamble Leaves and stems Malaysia SE, PP, CC, α[D], IR, UV, NMR, HR-MS [206]
Paederia foetida L. Stems China SE, PP, CC, rp-CC, NMR [179]
Whole plant SER, PP, HPLC-MSn, HR-MSn [180]
Stems China (purchased from a company) SE, PP, CC, p-HPLC-UV, NMR [178]
Aerial parts China SER, CC, sp-HPLC-UV, NMR [33]
Saprosmoside F (Figure 3) Saprosma scortechinii King & Gamble Leaves and stems Malaysia SE, PP, CC, α[D], IR, UV, NMR, HR-MS [206]
Paederia foetida L. Stems China (purchased from a company) SE, PP, CC, HPLC-MS [178]
Aerial parts China SER, CC, sp-HPLC-UV, NMR [33]
Saprosmoside G (Figure 7) Saprosma scortechinii King & Gamble Leaves and stems Malaysia SE, PP, CC, α[D], IR, UV, NMR, HR-MS [207]
Saprosmoside H (Figure 2) Saprosma scortechinii King & Gamble Leaves and stems Malaysia SE, PP, CC, α[D], IR, UV, NMR, HR-MS [207]
Saungmaygaoside A (Figure 10) Picrorhiza kurroa Royle ex Benth. Stems Myanmar USE, PP, CC, p-TLC, α[D], IR, UV, NMR, HR-MS [23]
Saungmaygaoside B (Figure 10) Picrorhiza kurroa Royle ex Benth. Stems Myanmar USE, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [23]
Saungmaygaoside C (Figure 10) Picrorhiza kurroa Royle ex Benth. Stems Myanmar USE, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [23]
Saungmaygaoside D (Figure 10) Picrorhiza kurroa Royle ex Benth. Stems Myanmar USE, PP, CC, p-TLC, α[D], IR, UV, NMR, HR-MS [23]
Scaevoloside (Figure 31) Scaevola racemigera Däniker Aerial parts New Caledonia SE, CC, α[D], IR, UV, NMR [44]
Sclerochitonoside C (Figure 12) Sclerochiton harveyanus Nees Leaves England (obtained from a botanical garden) SE, PP, CC, HPLC-UV, NMR, MS [208]
Seemannoside A (Figure 18) Lisianthius seemanii Perkins Aerial parts Panama SE, CC, rp-MPLC, sp-HPLC-UV-NMR, MP, α[D], IR, MS [209]
Seemannoside B (Figure 18) Lisianthius seemanii Perkins Aerial parts Panama SE, CC, rp-MPLC, sp-HPLC-UV-NMR, MP, α[D], IR, MS [209]
Semipapposiridoid A (Figure 9) Scabiosa semipapposa Salzm. ex DC. Aerial parts Algeria SE, rp-VLC, FC, rp-MPLC, α[D], IR, UV, NMR, HR-MS [210]
Semipapposiridoid B (Figure 9) Scabiosa semipapposa Salzm. ex DC. Aerial parts Algeria SE, rp-VLC, FC, rp-MPLC, α[D], IR, UV, NMR, HR-MS [210]
Semipapposiridoid C (Figure 9) Scabiosa semipapposa Salzm. ex DC. Aerial parts Algeria SE, rp-VLC, FC, rp-MPLC, α[D], IR, UV, NMR, HR-MS [210]
Semipapposiridoid D (Figure 9) Scabiosa semipapposa Salzm. ex DC. Aerial parts Algeria SE, rp-VLC, FC, rp-MPLC, α[D], IR, UV, NMR, HR-MS [210]
Semipapposiridoid E (Figure 31) Scabiosa semipapposa Salzm. ex DC. Aerial parts Algeria SE, rp-VLC, FC, rp-MPLC, α[D], IR, UV, NMR, HR-MS [210]
Semipapposiridoid F (Figure 31) Scabiosa semipapposa Salzm. ex DC. Aerial parts Algeria SE, rp-VLC, FC, rp-MPLC, α[D], IR, UV, NMR, HR-MS [210]
Septemfidoside (Figure 10) Gentiana septemfida Pall. Aerial parts Turkey SE, PP, CC, MPLC, α[D], IR, UV, NMR, HR-MS [211]
Whole plant Azerbaijan SE, HPLC-DAD, HPLC-DAD-MSn [212]
Gentiana olivieri Griseb. Whole plant Uzbekistan SE, SER, PP, CC, p-HPLC-UV, NMR [213]
Gentiana lutea L. Leaves Montenegro (different populations) USE, HPLC-DAD, HPLC-MSn [214]
Lomelosia stellata (L.) Raf. Whole plant Algeria SE, CC, CPC, FC, HPLC-UV, NMR [12]
Strychoside A (Figure 17) Strychnos spinosa Lam. Branches Japan (cultivated) HSE, PP, rp-MPLC, p-HPLC-UV, p-TLC, α[D], IR, UV, NMR, HR-MS [53]
Swerilactone A (Figure 33) Swertia mileensis T.N.Ho & W.L.Shih Whole plant China SER, PP, CC, rp-CC, MP, α[D], IR, UV, NMR, HR-MS [215]
Swerilactone B (Figure 33) Swertia mileensis T.N.Ho & W.L.Shih Whole plant China SER, PP, CC, rp-CC, MP, α[D], IR, UV, NMR, HR-MS [215]
Swerilactoside A (Figure 21) Swertia mileensis T.N.Ho & W.L.Shih Whole plant China SER, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [216]
Swerilactoside B (Figure 21) Swertia mileensis T.N.Ho & W.L.Shih Whole plant China SER, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [216]
Swerilactoside C (Figure 21) Swertia mileensis T.N.Ho & W.L.Shih Whole plant China SER, PP, CC, α[D], IR, UV, NMR, HR-MS [216]
Swertianoside A (Figure 22) Swertia angustifolia Buch.-Ham. ex D.Don Whole plant China SER, PP, CC, α[D], IR, UV, NMR, HR-MS [217]
Sylvestroside I (Figure 9) Dipsacus fullonum L. Seeds Denmark SE, p-TLC, α[D], UV, NMR [41]
Acicarpha tribuloides Juss. Aerial parts Peru SE, PP, CC, HPLC-UV, α[D], NMR, MS [218]
Linnaea chinensis A.Braun & Vatke Aerial parts Italy SE, PP, CC, NMR [11]
Strychnos lucida R.Br. Bark and wood Thailand HSE, PP, MPLC, rp-MPLC, p-HPLC-UV, NMR [54]
Pterocephalus hookeri (C.B.Clarke) E.Pritz. Underground parts Tibet SER, PP, CC rp-CC, NMR [58]
Aerial parts n.a. n.a. [17]
Whole plant China SE, PP, HPLC-UV [62]
SER, CC, UPLC-PDA [63]
Underground parts Tibet SER, PP, TLC, sp-HPLC-MS, NMR [59]
n.a. n.a. n.a. [60]
Whole plant China USE, UPLC-MSn [64]
Whole plant Tibet SE, PP, CC, p-HPLC-UV, p-TLC, NMR [65]
China (different populations) USE, UPLC-MSn [66]
Lomelosia stellata (L.) Raf. Whole plant Algeria SE, CC, CPC, FC, HPLC-UV, NMR [12]
Scabiosa atropurpurea L. Whole plant Turkey SE, CC, sp-HPLC-UV, HPLC-MSn [34]
Dipsacus inermis Wall. Roots China (purchased from a company) SER, PP, MPLC, p-TLC, NMR [50]
Dried Roots China (different populations) SE, CC, UHPLC-PDA, UHPLC-MSn [52]
n.a. n.a. n.a. [219]
Scabiosa semipapposa Salzm. ex DC. Aerial parts Algeria SE, rp-VLC, FC, rp-MPLC, NMR [210]
Sylvestroside II (Figure 9) Dipsacus fullonum L. Seeds Denmark SE, p-TLC, α[D], UV, NMR [41]
Abelia grandiflora (Rovelli ex André) Rehder Leaves Japan HSE, PP, ACT, CC, p-TLC, PLC, NMR [22]
Linnaea chinensis A.Braun & Vatke Aerial parts Italy SE, PP, CC, NMR [11]
Scabiosa semipapposa Salzm. ex DC. Aerial parts Algeria SE, rp-VLC, FC, rp-MPLC, NMR [210]
Sylvestroside III (Figure 30) Dipsacus fullonum L. Seeds Denmark SE, p-TLC, α[D], UV, NMR [41]
Leaves Poland USE, UHPLC-PDA-MSn [42]
Roots Poland USE, UHPLC-PDA-MSn [42]
Leaves Estonia DESE, HPLC-DAD-MS [220]
Leaves Estonia SE, CC, rp-FC, HPLC-DAD-MS, NMR [221]
Scaevola montana Labill. Aerial parts New Caledonia SE, CC, NMR [43]
Scaevola racemigera Däniker Aerial parts New Caledonia SE, CC, NMR [44]
Dipsacus laciniatus L. Aerial parts Hungary SE, PP, CCD, CC, α[D], IR, UV, NMR [45]
Acicarpha tribuloides Juss. Aerial parts Peru SE, PP, CC, HPLC-UV, α[D], NMR, MS [218]
Linnaea chinensis A.Braun & Vatke Aerial parts Italy SE, PP, CC, NMR [11]
Pterocephalus hookeri (C.B.Clarke) E.Pritz. Underground parts Tibet SER, PP, CC rp-CC, NMR [58]
n.a. n.a. n.a. [222]
Underground parts Tibet
SER, PP, TLC, sp-HPLC-MS, NMR [59]
n.a. n.a. n.a. [60]
Whole plant China SE, PP, HPLC-UV [62]
USE, UPLC-MSn [64]
Scabiosa atropurpurea L. Whole plant Turkey SE, CC, sp-HPLC-UV, HPLC-MSn [34]
Sylvestroside III dimethyl acetal (Figure 30) Scaevola montana Labill. Aerial parts New Caledonia SE, CC, NMR [43]
Pterocephalus hookeri (C.B.Clarke) E.Pritz. Underground parts Tibet SER, PP, CC rp-CC, NMR [58]
n.a. n.a. n.a. [60]
Underground parts Tibet SER, PP, TLC, sp-HPLC-MS, NMR [59]
Scabiosa atropurpurea L. Whole plant Turkey SE, CC, sp-HPLC-UV, HPLC-MSn [34]
Sylvestroside IV (Figure 30) Dipsacus fullonum L. Seeds Denmark SE, p-TLC, α[D], UV, NMR [41]
Leaves Estonia DESE, HPLC-DAD-MS [220]
Leaves Estonia SE, CC, rp-FC, HPLC-DAD-MS, NMR [221]
Dipsacus laciniatus L. Aerial parts Hungary SE, PP, CCD, CC, α[D], IR, UV, NMR [45]
Dipsacus ferox Loisel. Leaves and branches Italy SE, CC, NMR [153]
Pterocephalus hookeri (C.B.Clarke) E.Pritz. Underground parts Tibet SER, PP, CC rp-CC, NMR [58]
Underground parts Tibet SER, PP, TLC, sp-HPLC-MS, NMR [59]
n.a. n.a. n.a. [60]
Whole plant China SE, PP, HPLC-UV [62]
Tibet SE, PP, CC, sp-HPLC-UV, NMR [24]
Scabiosa atropurpurea L. Whole plant Turkey SE, CC, sp-HPLC-UV, HPLC-MSn [34]
Sylvestroside IV dimethyl acetal (Figure 30) Pterocephalus hookeri (C.B.Clarke) E.Pritz. Underground parts Tibet SER, PP, CC rp-CC, NMR [58]
Underground parts Tibet SER, PP, TLC, sp-HPLC-MS, NMR [59]
n.a. n.a. n.a. [60]
Whole plant Tibet SE, PP, CC, sp-HPLC-UV, NMR [24]
Picrorhiza kurroa Royle ex Benth. Stems Myanmar USE, PP, CC, sp-HPLC-UV, NMR [23]
Clinopodium serpyllifolium subsp. fruticosum (L.) Bräuchler Leaves Palestine DP, USE, UHPLC-DAD-MSn [223]
Tricoloroside (Figure 9) Loasa tricolor Ker Gawl. Whole plant Chile SE, ACT, CC, MP, α[D], IR, UV, NMR [224]
Tricoloroside methyl ester (Figure 9) Loasa acerifolia Dombey ex A.Juss. Leaves Germany (obtained from a botanical garden) SXE, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, MS [225]
Triplostoside A (Figure 9) Triplostegia glandulifera Wall. ex DC. Roots n.a. n.a. [226]
Strychnos spinosa Lam. Branches Japan (cultivated) HSE, PP, rp-MPLC, p-HPLC-UV, p-TLC, NMR [53]
Strychnos lucida R.Br. Bark and wood Thailand HSE, PP, MPLC, rp-MPLC, p-HPLC-UV, NMR [54]
Dipsacus inermis Wall. Roots China HSE, PP, CC, rp-CC, p-TLC, rp-HPLC-UV, NMR [48]
HSE, PP, CC, p-TLC, p-rp-HPLC-UV, NMR [106]
China (purchased from a company) SER, PP, MPLC, p-TLC, NMR [50]
n.a. n.a. n.a. [219]
Dried Roots China (purchased from a company) USE, HPLC-MSn [51]
n.a. n.a. [227]
China (different populations) SE, CC, UHPLC-PDA, UHPLC-MSn [52]
n.a. n.a. [228]
Strychnos axillaris Colebr. Bark and wood Thailand SER, PP, rp-MPLC, p-HPLC-UV, NMR [36]
Pterocephalus hookeri (C.B.Clarke) E.Pritz. Whole plant China SE, PP, CC, rp-CC, NMR [61]
USE, UPLC-MSn [64]
n.a. n.a. n.a. [222]
n.a. n.a. n.a. [229]
n.a. n.a. n.a. [60]
Whole plant Tibet SE, PP, CC, p-HPLC-UV, p-TLC, NMR [65]
Scabiosa semipapposa Salzm. ex DC. Aerial parts Algeria SE, rp-VLC, FC, rp-MPLC, NMR [210]
Tripterospermumcin B methyl acetal (Figure 19) Tripterospermum chinense (Migo) Harry Sm. Aerial parts China SE, PP, CC, α[D], IR, UV, NMR, HR-MS [230]
SER, PP, CC, p-HPLC-UV, NMR [231]
Tripterospermumcin D (Figure 10) Tripterospermum chinense (Migo) Harry Sm. Aerial parts China SER, PP, CC, p-HPLC-UV, α[D], IR, UV, NMR, HR-MS [231]
Urceolatoside A (Figure 27) Viburnum urceolatum Siebold & Zucc. Leaves Japan SE, PP, CC, α[D], MP, IR, UV, NMR [232]
Urceolatoside B (Figure 27) Viburnum urceolatum Siebold & Zucc. Leaves Japan SE, PP, CC, α[D], MP, IR, UV, NMR [232]
Urceolatoside C (Figure 27) Viburnum urceolatum Siebold & Zucc. Leaves Japan SE, PP, CC, α[D], MP, IR, UV, NMR [232]
Valeridoid B (Figure 27) Valeriana jatamansi Jones Roots and rhizomes China (purchased from a local market) SE, PP, CC, p-TLC, α[D], IR, UV, NMR, HR-MS [233]
Valeridoid C (Figure 27) Valeriana jatamansi Jones Roots and rhizomes China (purchased from a local market) SE, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [233]
Valeridoid D (Figure 27) Valeriana jatamansi Jones Roots and rhizomes China (purchased from a local market) SE, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [233]
Valeridoid E (Figure 34) Valeriana jatamansi Jones Roots and rhizomes China (purchased from a local market) SE, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [233]
Valeridoid F (Figure 34) Valeriana jatamansi Jones Roots and rhizomes China (purchased from a local market) SE, PP, CC, sp-HPLC-UV, α[D], IR, UV, NMR, HR-MS [233]
Wulfenoside (Figure 7) Wulfenia carinthiaca Jacq. Underground parts Austria SE, CC, HPLC-UV, α[D], IR, UV, NMR, HR-MS [234]
Dimer of alpinoside and alpinoside Globularia alypum L. Aerial parts Croatia SER, HPLC-PDA, HPLC-PDA-MSn [127]
Leaves Croatia USE, HPLC-PDA-MSn [128]
Dimer of aperuloside and asperulosidic acid (Figure 3) Lasianthus attenuatus var. attenuatus Leaves Japan SE, PP, CC, HPLC-UV, α[D], IR, UV, NMR, HR-MS [235]
Lasianthus verticillatus (Lour.) Merr. Leaves Japan SE, PP, rp-CC, HPLC-UV, α[D], IR, UV, NMR, MS [152]
Dimer of nuezhenide and 11-methyl-oleoside Olea europaea L. Fruits Tunisia (cultivated) SE, HPLC-UV, UHPLC-MSn [236]
Dimer of oleoside and 11-methyl-oleoside Olea europaea L. Fruits Tunisia (cultivated) SE, HPLC-UV, UHPLC-MSn [236]
Dimer of paederosidic acid I (Figure 2) Paederia foetida L. Roots Vietnam SXE, PP, CC, rp-HPLC-UV, α[D], IR, UV, NMR, MS [237]
Stems China (purchased from a company) SE, PP, HPLC-MSn [178]
Dimer of paederosidic acid II (Figure 2) Paederia foetida L. Stems China (purchased from a company) SE, PP, HPLC-MSn [178]
Dimer of paederosidic acid and asperuloside I (Figure 3) Paederia foetida L. Stems China (purchased from a company) SE, PP, CC, HPLC-MSn [178]
Dimer of paederosidic acid and asperuloside II (Figure 3) Paederia foetida L. Stems China (purchased from a company) SE, PP, HPLC-MSn [178]
Dimer of paederosidic acid and asperuloside III (Figure 3) Paederia foetida L. Stems China SE, PP, HPLC-MSn [178]
China (purchased from a company) SE, PP, HPLC-MSn [178]
Dimer of paederosidic acid and asperuloside IV (Figure 4) Paederia foetida L. Stems China (purchased from a company) SE, PP, HPLC-MSn [178]
Dimer of paederosidic acid and paederoside (Figure 2) Paederia foetida L. Roots Vietnam SXE, PP, CC, rp-HPLC-UV, α[D], IR, UV, NMR, MS [237]
Dimer of paederosidic acid and paederosidic acid methyl ester (Figure 2) Paederia foetida L. Roots Vietnam SXE, PP, CC, rp-HPLC-UV, α[D], IR, UV, NMR, MS [237]
Iridoid glycoside dimer I (Figure 16) Jasminum azoricum L. Leaves Egypt (obtained from a botanical garden) HSE, PP, CC, α[D], MP, IR, UV, NMR, MS [238]

Legend: 2D-HPLC-UF-MS: bidimensional high-performance liquid chromatography coupled to ultrafiltration and mass spectrometry; α[D]: optical rotation; ACT: active charcoal treatment; CC; column chromatography; CCC: counter current chromatography; CCD: countercurrent distribution chromatography; CC-TLC: countercurrent thin-layer chromatography; CPC: centrifugal partition chromatography; DCCC: droplet countercurrent chromatography DESE: extraction by means of deep eutectic solvents; DP: Defatting procedure; ECD: electronic circular dichroism; FC: flash chromatography; HPLC-DAD: high-performance liquid chromatography coupled to diode array detector; HPLC-DAD-CL: high-performance liquid chromatography coupled to diode array detector and chemiluminescence detector; HPLC-DAD-ELSD: high-performance liquid chromatography coupled to diode array detector and evaporative light scattering detector; HPLC-DAD-MS: high-performance liquid chromatography coupled to diode array detector and mass spectrometry; HPLC-DAD-MSn: high-performance liquid chromatography coupled to diode array detector and tandem mass spectrometry; HPLC-ELSD: high-performance liquid chromatography coupled to evaporative light scattering detector; HPLC-MS: high-performance liquid chromatography coupled to mass spectrometry; HPLC-MSn: high-performance liquid chromatography coupled to tandem mass spectrometry; HPLC-PDA: high-performance liquid chromatography coupled to photo diode array spectroscopy; HPLC-PDA-MSn: high-performance liquid chromatography coupled to photo diode array spectroscopy and tandem mass spectrometry; HPLC-UV: high-performance liquid chromatography coupled to ultraviolet spectroscopy; HR-MS: high resolution mass spectrometry; HSE = hot solvent extraction by maceration; IR = infrared spectroscopy; LPLC: low pressure liquid chromatography; MP = melting point; MPLC: medium pressure liquid chromatography; MS: mass spectrometry; MSn: tandem mass spectrometry; n.a.: not accessible; NMR: nuclear magnetic resonance spectroscopy; PC: paper chromatography; p-HPLC-UV: preparative high-performance liquid chromatography coupled to ultraviolet spectroscopy; PP: partition procedure; p-rp-HPLC-UV: preparative reversed-phase high-performance liquid chromatography coupled to ultraviolet spectroscopy; p-TLC: preparative thin-layer chromatography; rp-CC: reversed-phase column chromatography; rp-FC: reversed-phase flash chromatography; rp-HPLC-DAD: reversed-phase high-performance liquid chromatography coupled to diode array detector; rp-HPLC-UV: reversed-phase high-performance liquid chromatography coupled to ultraviolet spectroscopy; rp-LPLC: reversed-phase low pressure liquid chromatography; rp-MPLC: reversed-phase medium pressure liquid chromatography; rp-UHPLC-PDA-MSn: reversed-phase ultra-high-performance liquid chromatography coupled to photo diode array spectroscopy and tandem mass spectrometry; rp-VLC: reversed-phase vacuum liquid chromatography; -: solvent extraction by maceration; -R: solvent extraction under reflux; SXE: extraction by Soxhlet; sp-HPLC-UV: semi-preparative high-performance liquid chromatography coupled to ultraviolet spectroscopy; sp-rp-HPLC-UV: semi-preparative reversed-phase high-performance liquid chromatography coupled to ultraviolet spectroscopy; TLC: thin-layer chromatography; UFLC-MSn: ultra-fast liquid chromatography coupled to tandem mass spectrometry; UHPLC-MSn: ultra-high-performance liquid chromatography coupled to tandem mass spectrometry; UHPLC-PDA: ultra-high-performance liquid chromatography coupled to photo diode array spectroscopy; UHPLC-PDA-MSn: ultra-high-performance liquid chromatography coupled to photo diode array spectroscopy and tandem mass spectrometry; UHPLC-PDA: ultra-performing liquid chromatography coupled to photo diode array spectroscopy; UHPLC-UV: ultra-performing liquid chromatography coupled to ultraviolet spectroscopy; UHPLC-PDA: ultra-performing liquid chromatography coupled to photo diode array spectroscopy; UHPLC-PDA-MSn: ultra-performing liquid chromatography coupled to photo diode array spectroscopy and tandem mass spectrometry; UPLC-HR-MS: ultra-performing liquid chromatography coupled to high resolution mass spectrometry; UPLC-MS: ultra-performing liquid chromatography coupled to mass spectrometry; UPLC-MSn: ultra-performing liquid chromatography coupled to tandem mass spectrometry; USE: extraction with ultrasound; UV: ultraviolet spectroscopy; VLC: vacuum liquid chromatography.

To the best of our knowledge, two hundred and eighty-eight bis-iridoids have been identified in plants, so far. Sixty are structurally characterized by the link between two iridoid sub-units, fifty-four by the link between one iridoid sub-unit and one seco-iridoid sub-unit, ninety-two by the link between two seco-iridoid sub-units, nine by the link between two non-glucosidic iridoid sub-units, eleven by the link between one non-glucosidic iridoid sub-unit and one non-glucosidic seco-iridoid sub-unit, six by the link between one iridoid sub-unit and one non-glucosidic iridoid sub-unit, thirty-four by the link between one non-glucosidic iridoid sub-unit and one seco-iridoid sub-unit, twenty-two by a non-conventional bis-iridoid structure. By consequence, bis-iridoids with two seco-iridoid sub-units are the most abundant, whereas bis-iridoids with one iridoid sub-unit and one non-glucosidic iridoid sub-unit are the least abundant.

Different types of iridoid, seco-iridoid and non-glucosidic iridoid base structures are used to form bis-iridoids. Catalpol, loganic acid, loganin and paederosidic acid, together with their derivatives, are the most common for iridoids, whereas oleoside methyl ester and secoxyloganin, together with their derivatives, are the most common for seco-iridoids and loganetin, together with its derivatives, is the most common for non-glucosidic iridoids. Other present base structures for iridoids include 8-O-acetyl-harpagide, adoxoside, arborescoside, ajugoside, anthirride, anthirrinoside, aucubin, euphroside, gardenoside, gardoside, geniposide, scandoside and their derivatives. Other present base structures for seco-iridoids include morronoside, seco-loganol, seco-loganoside, swertiamarin, 9-oxo-swerimuslactone A and their derivatives. Other present base structures for non-glucosidic iridoids include iso-boonein, alyxialactone and their derivatives. Indeed, among the non-conventional bonds, there are intra-cyclic bis-iridoids, bonds with differently functionalized five carbon rings fused with other rings or not, and bonds with iridoids deprived of their classical double bond between carbons 3 and 4. From a specific observation of these base structures, it can be easily established that not all the existing base structures for iridoids, seco-iridoids and non-glucosidic iridoids are present in bis-iridoids, as well as not all the possible non-conventional bonds, and this may, indeed, represent an interesting research line for the future.

For what concerns the general structures of bis-iridoids, the literature survey has displayed some important issues. The first one regards the real existence of compounds having methyl, ethyl and dimethyl acetal groups, like in abelioside A methyl acetal, abeliforoside C, abeliforoside E, cantleyoside dimethyl acetal, cocculoside, dipsanoside J, saugmaygasoside D, sylvestroside III dimethyl acetal, sylvestroside IV dimethyl acetal, triplostoside A and tripterospermumcin B methyl acetal or having methyl ester, ethyl and butyl groups, like in aldosecolohanin B, atropurpurins A–B, pterocesides A–C, cornuside K, hookerinoid A, hookerinoid B, pterhookeroside and tricoloroside methyl ester. Given the methodologies adopted for their extraction and isolation, these compounds are likely to be artifacts [239], even if they are often found, thus evidencing their extreme ease of formation. Yet, these have not been considered as artifacts but as natural. It is not very simple to establish which is correct, but this whole situation can be easily solved by a simple analytical procedure constituted of steps of maceration, separation and identification using non-corresponding solvents, meaning not methanol for methyl acetal, dimethyl acetal and methyl ester compounds and not ethanol and butanol for ethylated and butylated compounds. The presence of these functional groups in the same compounds obtained following this way will be clear evidence of the fact they are not artifacts. In this sense, this topic may also be an involved line for future research. Another detected issue regards (E)-aldosecologanin and centauroside. Indeed, they are often considered as different compounds, but they present the same structure, and thus, they are the same compound. In the future, more attention must be paid to this aspect. Another issue is surely the need for major harmonization on the names of these compounds. This has been widely shown for the compounds named GI-3 and GI-5 in this paper. Actually, in others, they are named Gl-3 and Gl-5 or GL-3 and GL-5, but they are all the same. One single name for each compound is compulsory in order to avoid confusion and possible identification mistakes. Lastly, it is important to underline that most of the existing bis-iridoids have trivial names but not in a few cases: dimer of alpinoside and alpinoside, dimer of aperuloside and asperulosidic acid, dimer of nuezhenide and 11-methyl-oleoside, dimer of oleoside and 11-methyl-oleoside, dimer of paederosidic acids, dimer of paederosidic acid and paederoside, dimer of paederosidic acid and paederosidic acid methyl ester. The choice of giving trivial names to new compounds is always up to the authors, but this should always be encouraged, since it can really diminish the possibility of giving different names to the same structure, considering them to be new when they are not. The most fitting example of this is the compound named in this review as iridoid glycoside dimer I.

The most present compound in plants is cantleyoside, which has been reported in twenty-one different species belonging to ten different genera and four different families. Its highest occurrence is in four different genera (Cephalaria, Dipsacus, Pterocephalus and Strychnos), whereas, in two genera (Abelia and Lomelosia), its presence is singular. Conversely, several compounds have been found in single species. The presence of specific compounds in different species of the same genus, in different genera of the same family and in different families of the same order is extremely important, since it allows the individuation of chemophenetic markers at these levels. On the contrary, the presence of specific compounds in single species has no chemophenetic relevance due to their extremely limited distribution. The compound with the highest number of reports in the same species is centauroside in Lonicera japonica with twenty-three citations. Centauroside is also the compound with the highest number of studies for different populations of the same species (Lonicera japonica) collected in different countries. The multiple presence of the same compound at every classification level confirms that this compound is usually biosynthesized here, which is extremely important under the chemophenetic standpoint, potentially considering it as a chemophenetic marker.

For what concerns the organs of the species studied, flowers, flower buds, seeds, twigs, leaves, stems, stem bark, bark, wood, heartwood, roots and rhizomes have all been mentioned. A combination of two different organs has also been studied (stems and leaves, leaves and branches, flowers and twigs, bark and wood and roots and rhizomes), as well as more organs (whole plant, aerial parts, flowering aerial parts, foliage and underground parts). In some papers, the organs studied have been dried (generally, in the open air) prior to the phytochemical analysis, as dictated by the local Pharmacopeias (roots of Dipsacus inermis, flower buds and roots of Lonicera spp. and dried fruits of Ligustrum spp.). In all the other cases, the organs were fresh. For non-volatile secondary metabolites like bis-iridoids, the renowned issue regarding the utilization of dried or fresh organs for the phytochemical analysis is not so relevant given that they are generally stable at high temperatures but not too high [240,241].

For what concerns the collection areas of the species, all the continents are included. The highest number of reports where bis-iridoids have been found is in Asian countries, with China as the most numerous. The countries with the highest numbers of reports are Italy for Europe, Algeria for Africa, the USA for America and New Caledonia for Oceania. On the other hand, some countries (Montenegro, Namibia and Tanzania) have been mentioned only once. The number of reports for the occurrence of bis-iridoids in the plants of different territories is strictly correlated with the number of species in the territory that biosynthesize them, but it is not an absolute mirror of their worldwide distribution, since this also depends on their search. Either way, a little parallelism between the distribution of iridoids and bis-iridoids is present [242].

For what concerns the methodologies for the extraction, isolation and identification of bis-iridoids, classical procedures have been utilized. Maceration has been the most common extraction method. Column chromatography and HPLC techniques have been mostly employed as separation methodologies, whilst different spectroscopic and spectrometric techniques together have been used for the identification. All these methods are widely accepted for the analysis of non-volatile metabolites, not causing big issues, except for those previously discussed.

The structures of all the fully characterized bis-iridoids isolated from plants are reported in Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, Figure 12, Figure 13, Figure 14, Figure 15, Figure 16, Figure 17, Figure 18, Figure 19, Figure 20, Figure 21, Figure 22, Figure 23, Figure 24, Figure 25, Figure 26, Figure 27, Figure 28, Figure 29, Figure 30, Figure 31, Figure 32, Figure 33, Figure 34 and Figure 35.

Figure 1.

Figure 1

Structures of bis-iridoids in plants—iridoid plus iridoid part 1.

Figure 2.

Figure 2

Structures of bis-iridoids in plants—iridoid plus iridoid part 2.

Figure 3.

Figure 3

Structures of bis-iridoids in plants—iridoid plus iridoid part 3.

Figure 4.

Figure 4

Structures of bis-iridoids in plants—iridoid plus iridoid part 4.

Figure 5.

Figure 5

Structures of bis-iridoids in plants—iridoid plus iridoid part 5.

Figure 6.

Figure 6

Structures of bis-iridoids in plants—iridoid plus iridoid part 6.

Figure 7.

Figure 7

Structures of bis-iridoids in plants—iridoid plus iridoid part 7.

Figure 8.

Figure 8

Structures of bis-iridoids in plants—iridoid plus iridoid part 8.

Figure 9.

Figure 9

Structures of bis-iridoids in plants—iridoid plus seco-iridoid part 1.

Figure 10.

Figure 10

Structures of bis-iridoids in plants—iridoid plus seco-iridoid part 2.

Figure 11.

Figure 11

Structures of bis-iridoids in plants—iridoid plus seco-iridoid part 3.

Figure 12.

Figure 12

Structures of bis-iridoids in plants—iridoid plus seco-iridoid part 4.

Figure 13.

Figure 13

Structures of bis-iridoids in plants—iridoid plus seco-iridoid part 5.

Figure 14.

Figure 14

Structures of bis-iridoids in plants—seco-iridoid plus seco-iridoid part 1.

Figure 15.

Figure 15

Structures of bis-iridoids in plants—seco-iridoid plus seco-iridoid part 2.

Figure 16.

Figure 16

Structures of bis-iridoids in plants—seco-iridoid plus seco-iridoid part 3.

Figure 17.

Figure 17

Structures of bis-iridoids in plants—seco-iridoid plus seco-iridoid part 4.

Figure 18.

Figure 18

Structures bis-iridoids in plants—seco-iridoid plus seco-iridoid part 5.

Figure 19.

Figure 19

Structures of bis-iridoids in plants—seco-iridoid plus seco-iridoid part 6.

Figure 20.

Figure 20

Structures of bis-iridoids in plants—seco-iridoid plus seco-iridoid part 7.

Figure 21.

Figure 21

Structures of bis-iridoids in plants—seco-iridoid plus seco-iridoid part 8.

Figure 22.

Figure 22

Structures of bis-iridoids in plants—seco-iridoid plus seco-iridoid part 9.

Figure 23.

Figure 23

Structures of bis-iridoids in plants—seco-iridoid plus seco-iridoid part 10.

Figure 24.

Figure 24

Structures of bis-iridoids in plants—seco-iridoid plus seco-iridoid part 11.

Figure 25.

Figure 25

Structures of bis-iridoids in plants—seco-iridoid plus seco-iridoid part 12.

Figure 26.

Figure 26

Structures of bis-iridoids in plants—seco-iridoid plus seco-iridoid part 13.

Figure 27.

Figure 27

Structures of bis-iridoids in plants—non-glucosidic iridoid plus non-glucosidic iridoid.

Figure 28.

Figure 28

Structures of bis-iridoids in plants—non-glucosidic iridoid plus non-glucosidic seco-iridoid.

Figure 29.

Figure 29

Structures of bis-iridoids in plants—iridoid plus non-glucosidic iridoid.

Figure 30.

Figure 30

Structures of bis-iridoids in plants—non-glucosidic iridoid plus seco-iridoid part 1.

Figure 31.

Figure 31

Structures of bis-iridoids in plants—non-glucosidic iridoid plus seco-iridoid part 2.

Figure 32.

Figure 32

Structures of non-conventional bis-iridoids in plants—part 1.

Figure 33.

Figure 33

Structures of non-conventional bis-iridoids in plants—part 2.

Figure 34.

Figure 34

Structures of non-conventional bis-iridoids in plants—part 3.

Figure 35.

Figure 35

Structures of non-conventional bis-iridoids in plants—part 4.

The dimer of alpinoside and alpinoside, the dimer of nuezhenide and 11-methyl-oleoside, the dimer of oleoside and 11-methyl-oleoside, demethyl-hydroxy-oleonuezhenide, demethyl-oleonuezhenide, hydroxy-oleonuezhenide and oleoneonuezhenide have not been fully characterized, and their structures have not been drawn. This may surely be an argument for future research. Additionally, the structures of premnaodoroside F and premnaodoroside G have not been drawn, since they are constituted by two isomers.

3. Chemophenetic Evaluation of Bis-Iridoids

As Table 1 clearly displays, bis-iridoids have been found in many families: Apiaceae Lindl., Aquifoliaceae Bercht. & J.Presl, Bignoniaceae Juss., Calyceraceae R.Br. ex Rich., Caprifoliaceae Juss., Cornaceae Bercht. ex J.Presl, Gentianaceae Juss., Goodeniaceae R.Br., Lamiaceae Martinov, Loasaceae Juss., Loganiaceae R.Br. ex Mart., Oleaceae Hoffmanns. & Link, Orobanchaceae Vent., Plantaginaceae Juss., Rubiaceae Juss., Sarraceniaceae Dumort., Stemonuraceae Kårehed and Viburnaceae Raf. Their highest occurrence is in Rubiaceae, reported from fourteen different genera (Adina Salisb., Catunaregam Wolf, Coelospermum Blume, Coptosapelta Korth., Galium L., Gardenia J.Ellis, Gynochthodes Blume, Lasianthus Jack, Morinda L., Mussaenda Burm. ex L., Neonauclea Merr., Paederia L., Palicourea Aubl. and Saprosma Blume), whereas the lowest was in ten families, having been reported in one only genus each (Apiaceae: Heracleum L.; Aquifoliaceae: Ilex L.; Calyceraceae: Acicarpha Juss.; Cornaceae: Cornus L.; Cyperaceae: Cyperus L.; Goodeniaceae: Scaevola L.; Loganiaceae: Strychnos L.; Orobanchaceae: Pedicularis L.; Sarraceniaceae: Sarracenia Tourn. ex L.; Stemonuraceae: Cantleya Ridl.; Viburnaceae: Viburnum L.). Bis-iridoids have been reported in two Bignoniaceae genera (Argylia D.Don and Handroanthus Mattos), in twelve Caprifoliaceae genera (Abelia Gronov., Cephalaria Schrad., Dipsacus L., Linnaea Gronov., Lomelosia Raf., Lonicera L., Patrinia Juss., Pterocephalus Vaill. ex Adans., Scabiosa L., Triosteum L., Triplostegia Wall. ex DC. and Valeriana L.), in six Gentianaceae genera (Centaurium Hill, Fagraea Thunb., Gentiana Tourn. ex L., Gentianella Moench, Swertia L. and Tripterospermum Blume), in five Lamiaceae genera (Caryopteris Bunge, Clinopodium L., Leonotis (Pers.) R.Br. and Premna L., Salvia L.), in two Loasaceae genera (Kissenia R.Br. ex Endl. and Loasa Adans.); in seven Oleaceae genera (Fraxinus Tourn. ex L., Jasminum L., Ligustrum L., Olea L., Osmanthus Lour., Picconia DC. and Syringa L.) and in six Plantaginaceae genera (Anarrhinum Desf., Globularia Tourn. ex L., Kickxia Dumort., Linaria Mill., Picrorhiza Royle ex Benth. and Wulfenia Jacq.). This occurrence is not in perfect agreement with the one for simple iridoids [242]. In fact, several families (Acanthaceae Juss., Actinidiaceae Gilg & Werderm., Apocynaceae Juss., Asteraceae Giseke, Cardiopteridaceae Blume, Celastraceae R.Br., Centroplacaceae Doweld & Reveal, Columelliaceae D.Don, Cucurbitaceae Juss., Cyperaceae Juss., Daphniphyllaceae Müll.Arg., Ericaceae Juss., Escalloniaceae R.Br. ex Dumort., Eucommiaceae Engl., Fabaceae Juss., Euphorbiaceae Juss., Fouquieriaceae DC., Garryaceae Lindl., Gel-miaceae Struwe & V.A.Albert, Gri-liniaceae J.R.Forst. & G.Forst. ex A.Cunn., Hamamelidaceae R.Br, Hydrangeaceae Dumort., Icacinaceae Miers, Lentibulariaceae Rich., Malpighiaceae Juss., Malvaceae Juss., Martyniaceae Horan., Meliaceae Juss., Menyanthaceae Dumort., Metteniusaceae H.Karst. ex Schnizl., Montiniaceae Nakai, Nyssaceae Juss. ex Dumort., Passifloraceae Juss. ex Rous-l, Paulowniaceae Nakai, Pedaliaceae R.Br., Roridulaceae Martinov, Salicaceae Mirb., Sarraceniaceae Dumort., Scrophulariaceae Juss., Stilbaceae Kunth, Stylidiaceae R.Br. Symplocaceae Desf. and Verbenaceae J.St.-Hil.) are absent from Table 1, as well as a myriad of genera [242,243,244,245], and this clearly demonstrates that bis-iridoids must be separately considered from simple iridoids for biochemical, chemophenetic and pharmacological purposes and that their biosynthesis is only due to genetic factors and not to a combination of genetic and environmental factors.

Simple iridoids are generally considered as chemophenetic markers at different systematic levels from subspecies to orders [242]. The order with the highest occurrence of bis-iridoids is Lamiales, presenting a certain parallelism with simple iridoids [242]. From a careful and exhaustive evaluation of Table 1, some chemophenetic markers among bis-iridoids could be individuated at different levels. In particular, given their distribution, cantleyoside, laciniatosides and sylvestrosides can be used as chemophenetic markers for the Caprifoliaceae family, GI3 and GI5 for the Oleaceae family, oleonuezhenide for the Ligustrum genus and (Z)-aldosecologanin and centauroside for the Lonicera genus. For what concerns the other compounds, some have been reported in single species, while others in too many. For this, at the moment, they do not have the necessary characteristics to act as chemophenetic markers. Yet, future phytochemical studies might be useful in this sense, providing further information.

4. Biological Activities of Bis-Iridoids

Table 2 displays the biological activities associated with bis-iridoids. These are divided according to the type of activity, considering the methods employed and the effectiveness values of bis-iridoids in comparison with the positive controls.

Table 2.

Associated biological activities of all the identified bis-iridoids in plants.

Compound Type of Biological Activity Employed Methodology or Cells or Strains Effectiveness Value Positive Control
with Effectiveness Value
Reference
(3R,5S)-5-carboxy-vincosidic acid 22-loganin ester Anti-inflammatory Inhibition of NO production in LPS-activated RAW264.7 macrophage cells IC50 = 21.3 μM L-NMMA (IC50 = 22.6 μM) [108]
5-hydroxy-2‴-O-caffeoyl-caryocanoside B Enzymatic α-glucosidase No effect Acarbose (IC50 = 3.49 μM) [10]
7-O-caffeoyl-sylvestroside I Antioxidant DPPH· No effect Ascorbic acid (IC50 = 6.3 μg/mL) [12]
Antibacterial Enterococcus faecalis ATCC1054 MIC = 31.2 μg/mL Gentamycin (MIC = 16 μg/mL)
Vancomycin (MIC > 64 μg/mL)
Staphylococcus aureus CIP53.154 MIC = 62.5 μg/mL Gentamycin (MIC = 4 μg/mL)
Vancomycin (MIC > 64 μg/mL)
Escherichia coli CIP54.127 MIC = 250 μg/mL Gentamycin (MIC = 4 μg/mL)
Vancomycin (MIC > 16 μg/mL)
Staphylococcus epidermis MIC = 31.2 μg/mL Gentamycin (MIC = 0.25 μg/mL)
Vancomycin (MIC = 4 μg/mL)
Pseudomonas aeruginosa ATCC9027 MIC = 125 μg/mL Gentamycin (MIC = 8 μg/mL)
Vancomycin (MIC > 64 μg/mL)
Antitumoral HT1080 (MTT assay) IC50 = 35.9 μg/mL Not reported
Enzymatic Mushroom anti-tyrosinase No effect Kojic acid (IC50 = 6.8 μg/mL)
7-O-(p-coumaroyl)-sylvestroside I Antioxidant DPPH· No effect Ascorbic acid (IC50 = 6.3 μg/mL) [12]
Antibacterial Enterococcus faecalis ATCC1054 MIC = 31.2 μg/mL Gentamycin (MIC = 16 μg/mL)
Vancomycin (MIC > 64 μg/mL)
Staphylococcus aureus CIP53.154 MIC = 62.5 μg/mL Gentamycin (MIC = 4 μg/mL)
Vancomycin (MIC > 64 μg/mL)
Escherichia coli CIP54.127 MIC = 125 μg/mL Gentamycin (MIC = 4 μg/mL)
Vancomycin (MIC > 16 μg/mL)
Staphylococcus epidermis MIC = 31.2 μg/mL Gentamycin (MIC = 0.25 μg/mL)
Vancomycin (MIC = 4 μg/mL)
Pseudomonas aeruginosa ATCC9027 MIC = 125 μg/mL Gentamycin (MIC = 8 μg/mL)
Vancomycin (MIC > 64 μg/mL)
Antitumoral HT1080 (MTT assay) No effect Not reported
Enzymatic Mushroom anti-tyrosinase No effect Kojic acid (IC50 = 6.8 μg/mL)
2‴-O-(E)-p-coumaroyl-caryocanoside B Enzymatic α-glucosidase No effect Acarbose (IC50 = 3.49 μM) [10]
2‴-O-(Z)-p-coumaroyl-caryocanoside B Enzymatic α-glucosidase IC50 = 0.38 μM Acarbose (IC50 = 3.49 μM) [10]
(Z)-aldosecologanin Anti-inflammatory Inhibition of NO production in LPS-stimulated RAW 264.7 IC50 = 7.96 μM Mino (IC50 = 20.07 μM) [15]
Enzymatic α-glucosidase IC50 = 0.62 μM Acarbose (IC50 = 4.32 μM)
Abeliforoside C Enzymatic ATP-citrate lyase No effect BMS303141 (IC50 = 0.2 μM) [21]
Acetyl-CoA carboxylase No effect ND-630 (IC50 = 1.6 nM)
Abeliforoside D Enzymatic ATP-citrate lyase No effect BMS303141 (IC50 = 0.2 μM) [21]
Acetyl-CoA carboxylase No effect ND-630 (IC50 = 1.6 nM)
Abeliforoside E Enzymatic ATP-citrate lyase No effect BMS303141 (IC50 = 0.2 μM) [21]
Acetyl-CoA carboxylase No effect ND-630 (IC50 = 1.6 nM)
Abeliforoside F Enzymatic ATP-citrate lyase No effect BMS303141 (IC50 = 0.2 μM) [21]
Acetyl-CoA carboxylase No effect ND-630 (IC50 = 1.6 nM)
Abelioside A Antiviral Inhibition of the expression of Vpr in TREx-HeLa-Vpr cells Cell proliferation % = 107% (at the concentration of 10 μM) Damnacanthal (Cell proliferation % = 158% at the concentration of 10 μM) [23]
Abelioside B Antiviral Inhibition of the expression of Vpr in TREx-HeLa-Vpr cells Cell proliferation % = 129% (at the concentration of 10 μM) Damnacanthal (Cell proliferation % = 158% at the concentration of 10 μM) [23]
Abelioside A methyl acetal Antitumoral Caco2 (MTT assay) IC50 = 5.49 μM Paclitaxel (IC50 = 2.63 μM) [24]
Huh-7 (MTT assay) IC50 = 8.49 μM Paclitaxel (IC50 = 1.71 μM)
SW982 (MTT assay) IC50 = 7.91 μM Paclitaxel (IC50 = 1.99 μM)
Asperulosidyl-2’b-O-paederoside Anti-inflammatory Inhibition of NO production in LPS-activated RAW264.7 macrophage cells IC50 = 49.76 μM Indomethacin (IC50 = 23.93 μM) [108]
Atropurpurin A Enzymatic α-glucosidase from Saccharomyces cerevisiae IC50 = 86.96 μM Acarbose (IC50 = 175.00 μM) [34]
Atropurpurin B Enzymatic α-glucosidase from Saccharomyces cerevisiae IC50 = 92.59 μM Acarbose (IC50 = 175.00 μM) [34]
Blumeoside B Antioxidant Bleaching of the H2O-soluble carotenoid crocin Low effect (value not reported) Rutin (value not reported) [37]
Gallic acid (value not reported)
DPPH· No effect Quercetin (value not reported)
BHT (value not reported)
Blumeoside D Antioxidant Bleaching of the H2O-soluble carotenoid crocin Low effect (value not reported) Rutin (value not reported) [37]
Similar effect (value not reported) Gallic acid (value not reported)
DPPH· No effect Quercetin (value not reported)
BHT (value not reported)
Cantleyoside Antitumoral Caco2 (MTT assay) No effect Paclitaxel (IC50 = 2.63 μM) [24]
Huh-7 (MTT assay) Paclitaxel (IC50 = 1.71 μM)
SW982 (MTT assay) Paclitaxel (IC50 = 1.99 μM)
A549 (MTT assay) Florouracil (IC50 = 0.177 μg/mL) [48]
Bel7402 (MTT assay) Florouracil (IC50 = 0.542 μg/mL)
BGC-823 (MTT assay) Florouracil (IC50 = 0.695 μg/mL)
HCT-8 (MTT assay) Florouracil (IC50 = 0.67 μg/mL)
A2780 (MTT assay) Florouracil (IC50 = 0.569 μg/mL)
MCF-7 (MTT assay) IC50 > 50 μM Not reported [61]
HepG2 (MTT assay)
H460 (MTT assay)
Enzymatic α-glucosidase from Saccharomyces cerevisiae IC50 = 30.2 μM Acarbose (IC50 = 175.00 μM) [34]
Neuroprotective Aβ25–35 induced cell death in PC12 cells Inhibition % = 23.17% (at the concentration of 10 μM) Salvianolic acid B (Inhibition % = 18.28% at the concentration of 10 μM) [49]
Anti-inflammatory Inhibition of NO production in LPS-activated RAW264.7 macrophage cells IC50 > 50 μM L-NMMA (IC50 = 22.6 μM) [50]
IC50 = 89.48 μM L-NMMA (IC50 = 19.36 μM) [65]
Anti-arthritic Inhibition of NO production in LPS-stimulated human rheumatoid arthritis fibroblast synovial cells Good effect (values not reported) Not reported [115]
Inhibition of TNF-α production in LPS-stimulated human rheumatoid arthritis fibroblast synovial cells
Inhibition of IL-1β/6 production in LPS-stimulated human rheumatoid arthritis fibroblast synovial cells
Cantleyoside dimethyl acetal Enzymatic α-glucosidase from Saccharomyces cerevisiae IC50 = 35.64 μM Acarbose (IC50 = 175.00 μM) [34]
Antibacterial Staphylococcus aureus ATCC25923 DIZ = 11 mm Amoxicillin (DIZ = 21 mm) [70]
Clavulanic acid (DIZ = 22 mm)
Staphylococcus epidermidis ATCC12228 DIZ = 12 mm Amoxicillin (DIZ = 21 mm)
Clavulanic acid (DIZ = 24 mm)
Pseudomonas aeruginosa ATCC27853 DIZ = 10 mm Amoxicillin (DIZ = 25 mm)
Clavulanic acid (DIZ = 20 mm)
Escherichia coli ATCC25922 DIZ = 10 mm Amoxicillin (DIZ = 22 mm)
Clavulanic acid (DIZ = 23 mm)
Enterobacter cloacae ATCC13047 DIZ = 8 mm Amoxicillin (DIZ = 23 mm)
Clavulanic acid (DIZ = 25 mm)
Klebsiella pneumoniae ATCC13883 DIZ = 10 mm Amoxicillin (DIZ = 24 mm)
Clavulanic acid (DIZ = 22 mm)
Antifungal Candida albicans ATCC10231 DIZ = 9 mm Amphotericin (DIZ = 23 mm)
Candida tropicalis ATCC13801 DIZ = 10 mm Amphotericin (DIZ = 24 mm)
Candida glabrata ATCC28838 DIZ = 10 mm Amphotericin (DIZ = 25 mm)
Caryocanoside B Enzymatic α-glucosidase No effect Acarbose (IC50 = 3.49 μM) [10]
Centauroside Antioxidant Peroxy-nitrite spiking test No effect Not reported [81]
Anti-inflammatory Inhibition of NO production in LPS-stimulated RAW 264.7 IC50 = 12.6 μM Mino (IC50 = 20.07 μM) [15]
Enzymatic α-glucosidase IC50 = 1.08 μM Acarbose (IC50 = 4.32 μM)
Muscle contraction Intestine tissue motility in mice Relative frequency motility % = 98.4% Loperamide hydrochloride (Relative frequency motility % = 82.7% [89]
Centauroside A Antitumoral MCF-7 No effect Carboplatin (IC50 = 17.5 μM) [90]
MDA-MB-453 No effect Carboplatin (IC50 = 12.5 μM)
3T3-L1 IC50 = 152.7 μM Carboplatin (IC50 = 16.1 μM)
Chrysathain Antitumoral HL-60 (MTT assay) IC50~70 μg/mL Etoposide (IC50 not reported) [91]
Citrifolinin A-1 Enzymatic Inhibition of UVB-induced Transcriptional Activator Protein-1 activity No effect Not reported [92]
Cocculoside Antitumoral A549 No effect Adriamycin (value not reported) [94]
H157
HepG2
MCF-7
Enzymatic Acetylcholinesterase No effect Tacrine (value not reported)
Coptosapside A Antibacterial Salmonella enterica serovar (broth microdilution method) No effect Kanamycin (MIC = 0.39 mg/mL) [96]
Typhimurium UK-1 χ8956 (broth microdilution method)
Pseudomonas aeruginosa PA01 (broth microdilution method)
Proteusbacillus vulgaris CPCC160013 (broth microdilution method)
Escherichia coli CICC10003 (broth microdilution method)
Mycobacterium smegmatis mc2155 (broth microdilution method)
Staphylococcus aureus ATCC25923 (broth microdilution method)
Coptosapside B Antibacterial Salmonella enterica serovar (broth microdilution method) No effect Kanamycin (MIC = 0.39 mg/mL) [96]
Typhimurium UK-1 χ8956 (broth microdilution method)
Pseudomonas aeruginosa PA01 (broth microdilution method)
Proteusbacillus vulgaris CPCC160013 (broth microdilution method)
Escherichia coli CICC10003 (broth microdilution method)
Mycobacterium smegmatis mc2155 (broth microdilution method)
Staphylococcus aureus ATCC25923 (broth microdilution method)
Coptosapside C Antibacterial Salmonella enterica serovar (broth microdilution method) No effect Kanamycin (MIC = 0.39 mg/mL) [96]
Typhimurium UK-1 χ8956 (broth microdilution method)
Pseudomonas aeruginosa PA01 (broth microdilution method)
Proteusbacillus vulgaris CPCC160013 (broth microdilution method)
Escherichia coli CICC10003 (broth microdilution method)
Mycobacterium smegmatis mc2155 (broth microdilution method)
Staphylococcus aureus ATCC25923 (broth microdilution method)
Coptosapside D Antibacterial Salmonella enterica serovar (broth microdilution method) No effect Kanamycin (MIC = 0.39 mg/mL) [96]
Typhimurium UK-1 χ8956 (broth microdilution method)
Pseudomonas aeruginosa PA01 (broth microdilution method)
Proteusbacillus vulgaris CPCC160013 (broth microdilution method)
Escherichia coli CICC10003 (broth microdilution method)
Mycobacterium smegmatis mc2155 (broth microdilution method)
Staphylococcus aureus ATCC25923 (broth microdilution method)
Coptosapside E Antibacterial Salmonella enterica serovar (broth microdilution method) No effect Kanamycin (MIC = 0.39 mg/mL) [96]
Typhimurium UK-1 χ8956 (broth microdilution method)
Pseudomonas aeruginosa PA01 (broth microdilution method)
Proteusbacillus vulgaris CPCC160013 (broth microdilution method)
Escherichia coli CICC10003 (broth microdilution method)
Mycobacterium smegmatis mc2155 (broth microdilution method)
Staphylococcus aureus ATCC25923 (broth microdilution method)
Coptosapside F Antibacterial Salmonella enterica serovar (broth microdilution method) No effect Kanamycin (MIC = 0.39 mg/mL) [96]
Typhimurium UK-1 χ8956 (broth microdilution method)
Pseudomonas aeruginosa PA01 (broth microdilution method)
Proteusbacillus vulgaris CPCC160013 (broth microdilution method)
Escherichia coli CICC10003 (broth microdilution method)
Mycobacterium smegmatis mc2155 (broth microdilution method)
Staphylococcus aureus ATCC25923 (broth microdilution method)
Cornuofficinaliside C Antidiabetic Relative glucose consumption in insulin-induced HepG2 cells Consumption = 0.624 mM/OD at the concentration of 10 μM Rosiglitazone (1.33 (mM/OD at the concentration of 10 μM) [97]
Cornuofficinaliside D Antidiabetic Relative glucose consumption in insulin-induced HepG2 cells Consumption = 0.887 mM/OD at the concentration of 10 μM Rosiglitazone (1.33 (mM/OD at the concentration of 10 μM) [97]
Cornuofficinaliside E Antidiabetic Relative glucose consumption in insulin-induced HepG2 cells Consumption = 0.595 mM/OD at the concentration of 10 μM Rosiglitazone (1.33 (mM/OD at the concentration of 10 μM) [97]
Cornuofficinaliside F Antidiabetic Relative glucose consumption in insulin-induced HepG2 cells Consumption = 1.493 mM/OD at the concentration of 10 μM Rosiglitazone (1.33 (mM/OD at the concentration of 10 μM) [97]
Cornuofficinaliside G Antidiabetic Relative glucose consumption in insulin-induced HepG2 cells Consumption = 0.841 mM/OD at the concentration of 10 μM Rosiglitazone (1.33 (mM/OD at the concentration of 10 μM) [97]
Cornuofficinaliside H Antidiabetic Relative glucose consumption in insulin-induced HepG2 cells Consumption = 3.249 mM/OD at the concentration of 10 μM Rosiglitazone (1.33 (mM/OD at the concentration of 10 μM) [97]
Cornuofficinaliside I Antidiabetic Relative glucose consumption in insulin-induced HepG2 cells Consumption = 0.704 mM/OD at the concentration of 10 μM Rosiglitazone (1.33 (mM/OD at the concentration of 10 μM) [97]
Cornuofficinaliside J Antidiabetic Relative glucose consumption in insulin-induced HepG2 cells Consumption = 1.063 mM/OD at the concentration of 10 μM Rosiglitazone (1.33 (mM/OD at the concentration of 10 μM) [97]
Cornuofficinaliside K Antidiabetic Relative glucose consumption in insulin-induced HepG2 cells Consumption = 0.716 mM/OD at the concentration of 10 μM Rosiglitazone (1.33 (mM/OD at the concentration of 10 μM) [97]
Cornuofficinaliside L Antidiabetic Relative glucose consumption in insulin-induced HepG2 cells Consumption = 1.886 mM/OD at the concentration of 10 μM Rosiglitazone (1.33 (mM/OD at the concentration of 10 μM) [97]
Cornuofficinaliside M Antidiabetic Relative glucose consumption in insulin-induced HepG2 cells Consumption = 0.652 mM/OD at the concentration of 10 μM Rosiglitazone (1.33 (mM/OD at the concentration of 10 μM) [97]
Cornusdiridoid A Antidiabetic Relative glucose consumption in insulin-induced HepG2 cells EC50 = 15.31 μM Rosiglitazone (EC50 = 3.35 μM) [100]
Antioxidant DPPH· No effect Trolox (IC50 = 33.12 μM) [98]
ABTS·+ IC50 = 79.24 μM Trolox (IC50 = 23.2 μM)
Enzymatic α-glucosidase IC50 = 243.5 μM Acarbose (IC50 = 276.3 μM)
Anti-inflammatory Inhibition of LPS-induced NO production in RAW 264.7 cells IC50 = 28.87 μM Indomethacin (IC50 = 48.32 μM)
Cornusdiridoid B Antioxidant DPPH· IC50 = 78.25 μM Trolox (IC50 = 33.12 μM) [98]
ABTS·+ IC50 = 44.16 μM Trolox (IC50 = 23.2 μM)
Enzymatic α-glucosidase IC50 = 251.9 μM Acarbose (IC50 = 276.3 μM)
Anti-inflammatory Inhibition of LPS-induced NO production in RAW 264.7 cells IC50 = 29.52 μM Indomethacin (IC50 = 48.32 μM)
Cornusdiridoid C Antioxidant DPPH· IC50 = 44.89 μM Trolox (IC50 = 33.12 μM) [98]
ABTS·+ No effect Trolox (IC50 = 23.2 μM)
Enzymatic α-glucosidase IC50 = 267.1 μM Acarbose (IC50 = 276.3 μM)
Anti-inflammatory Inhibition of LPS-induced NO production in RAW 264.7 cells No effect Indomethacin (IC50 = 48.32 μM)
Cornusdiridoid D Antioxidant DPPH· No effect Trolox (IC50 = 33.12 μM) [98]
ABTS·+ IC50 = 48.99 μM Trolox (IC50 = 23.2 μM)
Enzymatic α-glucosidase IC50 = 516.3 μM Acarbose (IC50 = 276.3 μM)
Anti-inflammatory Inhibition of LPS-induced NO production in RAW 264.7 cells IC50 = 34.12 μM Indomethacin (IC50 = 48.32 μM)
Cornusdiridoid E Antioxidant DPPH· IC50 = 36.60 μM Trolox (IC50 = 33.12 μM) [98]
ABTS·+ IC50 = 48.99 μM Trolox (IC50 = 23.2 μM)
Enzymatic α-glucosidase No effect Acarbose (IC50 = 276.3 μM)
Anti-inflammatory Inhibition of LPS-induced NO production in RAW 264.7 cells No effect Indomethacin (IC50 = 48.32 μM)
Cornusdiridoid F Antioxidant DPPH· IC50 = 60.17 μM Trolox (IC50 = 33.12 μM) [98]
ABTS·+ IC50 = 17.10 μM Trolox (IC50 = 23.2 μM)
Enzymatic α-glucosidase No effect Acarbose (IC50 = 276.3 μM)
Anti-inflammatory Inhibition of LPS-induced NO production in RAW 264.7 cells IC50 = 26.84 μM Indomethacin (IC50 = 48.32 μM)
Cornuside A Antidiabetic Relative glucose consumption in insulin-induced HepG2 cells No effect Rosiglitazone (EC50 = 3.35 μM) [100]
Anti-inflammatory Inhibition of the activation of IL-6-induced STAT3 in HepG2 cells No effect Genistein (IC50 = 24.8 μM) [99]
Cornuside B Anti-inflammatory Inhibition of the activation of IL-6-induced STAT3 in HepG2 cells No effect Genistein (IC50 = 24.8 μM) [99]
Cornuside C Anti-inflammatory Inhibition of the activation of IL-6-induced STAT3 in HepG2 cells IC50 = 11.9 μM Genistein (IC50 = 24.8 μM) [99]
Cornuside D Anti-inflammatory Inhibition of the activation of IL-6-induced STAT3 in HepG2 cells IC50 = 79.1 μM Genistein (IC50 = 24.8 μM) [99]
Cornuside E Antidiabetic Relative glucose consumption in insulin-induced HepG2 cells No effect Rosiglitazone (EC50 = 3.35 μM) [100]
Anti-inflammatory Inhibition of the activation of IL-6-induced STAT3 in HepG2 cells IC50 = 47.0 μM Genistein (IC50 = 24.8 μM) [99]
Cornuside F Anti-inflammatory Inhibition of the activation of IL-6-induced STAT3 in HepG2 cells IC50 = 29.7 μM Genistein (IC50 = 24.8 μM) [99]
Cornuside G Anti-inflammatory Inhibition of the activation of IL-6-induced STAT3 in HepG2 cells IC50 = 27.6 μM Genistein (IC50 = 24.8 μM) [99]
Cornuside H Anti-inflammatory Inhibition of the activation of IL-6-induced STAT3 in HepG2 cells IC50 = 19.4 μM Genistein (IC50 = 24.8 μM) [99]
Cornuside I Anti-inflammatory Inhibition of the activation of IL-6-induced STAT3 in HepG2 cells IC50 = 21.9 μM Genistein (IC50 = 24.8 μM) [99]
Cornuside J Anti-inflammatory Inhibition of the activation of IL-6-induced STAT3 in HepG2 cells IC50 = 43.0 μM Genistein (IC50 = 24.8 μM) [99]
Cornuside K Antidiabetic Relative glucose consumption in insulin-induced HepG2 cells EC50 = 70.43 μM Rosiglitazone (EC50 = 3.35 μM) [100]
Anti-inflammatory Inhibition of the activation of IL-6-induced STAT3 in HepG2 cells No effect Genistein (IC50 = 24.8 μM) [99]
Cornuside L Anti-inflammatory Inhibition of the activation of IL-6-induced STAT3 in HepG2 cells IC50 = 12.2 μM Genistein (IC50 = 24.8 μM) [99]
Cornuside M Anti-inflammatory Inhibition of the activation of IL-6-induced STAT3 in HepG2 cells IC50 = 40.5 μM Genistein (IC50 = 24.8 μM) [99]
Cornuside N Anti-inflammatory Inhibition of the activation of IL-6-induced STAT3 in HepG2 cells IC50 = 52.6 μM Genistein (IC50 = 24.8 μM) [99]
Cornuside O Anti-inflammatory Inhibition of the activation of IL-6-induced STAT3 in HepG2 cells IC50 = 71.9 μM Genistein (IC50 = 24.8 μM) [99]
Demethyl-hydroxy-oleonuezhenide Anti-inflammatory Inhibition of CD11b expression in cytochalasin A and f-MLP stimulated neutrophils Inhibition % = 1.5% (at the concentration of 50 μM) Quercetin (No effect) [103]
Oleuropein (Inhibition % = 19.5% at the concentration of 50 μM)
Inhibition of ROS production in f-MLP stimulated neutrophils Inhibition % = 59% (at the concentration of 50 μM) Quercetin (Inhibition % = 93.2% at the concentration of 50 μM)
Oleuropein (Inhibition % = 73.7% at the concentration of 50 μM)
Inhibition of IL-8 expression in LPS stimulated macrophages Inhibition % = 47.6% (at the concentration of 50 μM) Quercetin (Inhibition % = 78.3% at the concentration of 50 μM)
Oleuropein (Inhibition % = 13.5% at the concentration of 50 μM)
Inhibition of IL-10 expression in LPS stimulated macrophages No effect Oleuropein (Induction % = +172% at the concentration of 50 μM)
Inhibition of TNF-α expression in LPS stimulated macrophages Inhibition % = 38.1% (at the concentration of 50 μM) Quercetin (Inhibition % = 91.1% at the concentration of 50 μM)
Oleuropein (Inhibition % = 71.7% at the concentration of 50 μM)
Demethyl-oleonuezhenide Anti-inflammatory Inhibition of CD11b expression in cytochalasin A and f-MLP stimulated neutrophils No effect Quercetin (No effect) [103]
Oleuropein (Inhibition % = 19.5% at the concentration of 50 μM)
Inhibition of ROS production in f-MLP stimulated neutrophils Inhibition % = 44.4% (at the concentration of 50 μM) Quercetin (Inhibition % = 93.2% at the concentration of 50 μM)
Oleuropein (Inhibition % = 73.7% at the concentration of 50 μM)
Inhibition of IL-8 expression in LPS stimulated macrophages Inhibition % = 62.3% (at the concentration of 50 μM) Quercetin (Inhibition % = 78.3% at the concentration of 50 μM)
Oleuropein (Inhibition % = 13.5% at the concentration of 50 μM)
Inhibition of IL-10 expression in LPS stimulated macrophages Induction % = +65.4% (at the concentration of 50 μM) Oleuropein (Induction % = +172% at the concentration of 50 μM)
Inhibition of TNF-α expression in LPS stimulated macrophages Inhibition % = 16.2% (at the concentration of 50 μM) Quercetin (Inhibition % = 91.1% at the concentration of 50 μM)
Oleuropein (Inhibition % = 71.7% at the concentration of 50 μM)
Dioscoridin C Antitumoral HeLa (MTT assay) Inhibition % = 12.23% (at the concentration of 30 μM) Cisplatin (Inhibition % = 99.93% at the concentration of 30 μM) [105]
A2780 (MTT assay) Inhibition % = 12.29% (at the concentration of 30 μM) Cisplatin (Inhibition % = 95.02% at the concentration of 30 μM) [105]
T47D (MTT assay) Inhibition % = 33.42% (at the concentration of 30 μM) Cisplatin (Inhibition % = 57.95% at the concentration of 30 μM) [105]
Dipsanoside C Antitumoral A549 (MTT assay) No effect Florouracil (IC50 = 0.177 μg/mL) [48]
Bel7402 (MTT assay) Florouracil (IC50 = 0.542 μg/mL)
BGC-823 (MTT assay) Florouracil (IC50 = 0.695 μg/mL)
HCT-8 (MTT assay) Florouracil (IC50 = 0.67 μg/mL)
A2780 (MTT assay) Florouracil (IC50 = 0.569 μg/mL)
Dipsanoside D Antitumoral A549 (MTT assay) No effect Florouracil (IC50 = 0.177 μg/mL) [48]
Bel7402 (MTT assay) Florouracil (IC50 = 0.542 μg/mL)
BGC-823 (MTT assay) Florouracil (IC50 = 0.695 μg/mL)
HCT-8 (MTT assay) Florouracil (IC50 = 0.67 μg/mL)
A2780 (MTT assay) Florouracil (IC50 = 0.569 μg/mL)
Dipsanoside E Antitumoral A549 (MTT assay) No effect Florouracil (IC50 = 0.177 μg/mL) [48]
Bel7402 (MTT assay) Florouracil (IC50 = 0.542 μg/mL)
BGC-823 (MTT assay) Florouracil (IC50 = 0.695 μg/mL)
HCT-8 (MTT assay) Florouracil (IC50 = 0.67 μg/mL)
A2780 (MTT assay) Florouracil (IC50 = 0.569 μg/mL)
Dipsanoside F Antitumoral A549 (MTT assay) No effect Florouracil (IC50 = 0.177 μg/mL) [48]
Bel7402 (MTT assay) Florouracil (IC50 = 0.542 μg/mL)
BGC-823 (MTT assay) Florouracil (IC50 = 0.695 μg/mL)
HCT-8 (MTT assay) Florouracil (IC50 = 0.67 μg/mL)
A2780 (MTT assay) Florouracil (IC50 = 0.569 μg/mL)
Dipsanoside G Antitumoral A549 (MTT assay) No effect Florouracil (IC50 = 0.177 μg/mL) [48]
Bel7402 (MTT assay) Florouracil (IC50 = 0.542 μg/mL)
BGC-823 (MTT assay) Florouracil (IC50 = 0.695 μg/mL)
HCT-8 (MTT assay) Florouracil (IC50 = 0.67 μg/mL)
A2780 (MTT assay) Florouracil (IC50 = 0.569 μg/mL)
Dipsanoside J Anti-inflammatory Inhibition of LPS-induced NO production in RAW264.7 macrophages No effect Not reported [106]
Dipsanoside M Antiviral HIV-1 integrase inhibition activities (microplate screening assay) IC50 = 84.03 μM Baicalein (IC50 = 1.37 μM) [107]
Dipsanoside N Antiviral HIV-1 integrase inhibition activities (microplate screening assay) IC50 = 92.67 μM Baicalein (IC50 = 1.37 μM) [107]
Dipasaperine Antitumoral A549 No effect Adriamycin (value not reported) [94]
H157
HepG2
MCF-7
Enzymatic Acetylcholinesterase No effect Tacrine (value not reported)
Anti-inflammatory Inhibition of NO production in LPS-activated RAW264.7 macrophage cells IC50 = 20.5 μM L-NMMA (IC50 = 22.6 μM) [108]
Disperoside A Enzymatic A-glucosidase IC50 > 50 μM Not reported [109]
Disperoside B Enzymatic A-glucosidase IC50 > 50 μM Not reported [109]
GI-3 Enzymatic MMP-2 IC50 < 100 μM Doxycycline (IC50 > 100 μM) [122]
MMP-9 IC50 < 100 μM
Immunosupressive Inhibition of IL-2 production in T activated cells after treatment with PMA No effect Not reported [121]
Weight losing Adipogenesis inhibition Inhibition % = 2.1% (at the concentration of 1 mg/mL) Not reported [115]
Activation of PPARα-mediated pathways Activation % = 21.0% (at the concentration of 10−4 M) WY14,643 (Activation % = 100% at the concentration of 10−5 M)
GTS inhibition in 3T3-L1 preadipocytes No effect Not reported
Pain killing Induction of ERK and CREB phosphorylation in primary cortical neuron No effect Not reported [116]
GI-5 Weight losing Adipogenesis inhibition Inhibition % = 100% (at the concentration of 1 mg/mL) Not reported [115]
Activation of PPARα-mediated pathways Activation % = 14.2% (at the concentration of 10−4 M) WY14,643 (Activation % = 100% at the concentration of 10−5 M)
GTS inhibition in 3T3-L1 preadipocytes No effect Not reported
Hydroxy-oleonuezhenide Anti-inflammatory Inhibition of CD11b expression in cytochalasin A and f-MLP stimulated neutrophils Inhibition % = 12.8% (at the concentration of 50 μM) Quercetin (No effect) [103]
Oleuropein (Inhibition % = 19.5% at the concentration of 50 μM)
Inhibition of ROS production in f-MLP stimulated neutrophils Inhibition % = 59% (at the concentration of 50 μM) Quercetin (Inhibition % = 93.2% at the concentration of 50 μM)
Oleuropein (Inhibition % = 73.7% at the concentration of 50 μM)
Inhibition of IL-8 expression in LPS stimulated macrophages Inhibition % = 48.6% (at the concentration of 50 μM) Quercetin (Inhibition % = 78.3% at the concentration of 50 μM)
Oleuropein (Inhibition % = 13.5% at the concentration of 50 μM)
Inhibition of IL-10 expression in LPS stimulated macrophages Induction % = +58.9% (at the concentration of 50 μM) Oleuropein (Induction % = +172% at the concentration of 50 μM)
Inhibition of TNF-α expression in LPS stimulated macrophages Inhibition % = 11.8% (at the concentration of 50 μM) Quercetin (Inhibition % = 91.1% at the concentration of 50 μM)
Oleuropein (Inhibition % = 71.7% at the concentration of 50 μM)
Hookerinoid A Anti-inflammatory Inhibition of NF-kB pathway in a luciferase reporter gene LC50 = 18 mM Not reported [130]
Hookerinoid B Anti-inflammatory Inhibition of NF-kB pathway in a luciferase reporter gene LC50 = 16 mM Not reported [130]
Iso-jaspolyoside A Antioxidant DPPH· EC50 = 100 μg/mL BHT (EC50 = 111 μg/mL) [135]
Iso-oleonuzhenide Pain killing Induction of ERK and CREB phosphorylation in primary cortical neuron Not reported Not reported [116]
Immunosupressive Inhibition of IL-2 production in T activated cells after treatment with PMA No effect Not reported [121]
Jasmigeniposide B Antiviral H1N1 No effect Not reported [138]
H3N2
EV-71
Japonicoside E Anti-inflammatory Inhibition of PGE2 in LPS-stimulated Raw 246.7 cells No effect Not reported [137]
Jasnervoside F Antioxidant DPPH· Inhibition % = 28.31% (at the concentration of 5 μg/mL) Ascorbic acid (IC50 = 0.88 μg/mL) [139]
Anti-inflammatory Inhibition of NO production in LPS-treated BV2 cells Inhibition % = 43.15% (at the concentration of 10 μM) Curcumin (Inhibition % = 41.78% at the concentration of 1 μM)
Inhibition of TNF-α production in LPS-treated BV2 cells Inhibition % = 13.8% (at the concentration of 10 μM) Curcumin (Inhibition % = 60.37% at the concentration of 1 μM)
Inhibition of IL-1b production in LPS-treated BV2 cells Inhibition % = 23.35% (at the concentration of 10 μM) Curcumin (Inhibition % = 46.67% at the concentration of 1 μM)
Antitumoral A-549 No effect Florouracil (value not reported)
HC-T8
BEL-7402
Jaspolyanoside Antioxidant DPPH· EC50 = 711 μg/mL BHT (EC50 = 111 μg/mL) [135]
Neuroprotection NGF secretion in C6 cells Secretion % = 114.4% (at the concentration of 50 μg/mL) 6-shogaol (Secretion % = 168.58%) [142]
Jaspolyoside Antioxidant DPPH· EC50 = 51 μg/mL BHT (EC50 = 111 μg/mL) [135]
No effect BHA (EC50 = 26.46 μg/mL) [144]
Superoxide anion EC50 = 4.97 μM BHA (EC50 = 16.5 μg/mL) [144]
Neuroprotection NGF secretion in C6 cells Secretion % = 171.64 % (at the concentration of 50 μg/mL) 6-shogaol (Secretion % = 168.58%) [142]
Korolkoside Toxicity Mice Not lethal but weakening (LD50 not calculated) Not reported [149]
Laciniatoside I Antibacterial Staphylococcus aureus MIC = 64 μg/mL Gentamycin (MIC = 1 μg/mL) [151]
Staphylococcus epidermidis MIC = 32 μg/mL
Salmonella typhimurium MIC = 64 μg/mL
Escherichia coli MIC = 16 μg/mL
Bacillus cereus MIC = 16 μg/mL Gentamycin (MIC = 4 μg/mL)
Klebsiella pneumoniae MIC = 32 μg/mL
Enterococcus faecalis MIC = 16 μg/mL Gentamycin (MIC = 16 μg/mL)
Pseudomonas aeruginosa MIC = 16 μg/mL Gentamycin (MIC = 2 μg/mL)
Laciniatoside II Antitumoral Caco2 (MTT assay) No effect Paclitaxel (IC50 = 2.63 μM) [24]
Huh-7 (MTT assay) Paclitaxel (IC50 = 1.71 μM)
SW982 (MTT assay) Paclitaxel (IC50 = 1.99 μM)
Laciniatoside V Enzymatic α-glucosidase from Saccharomyces cerevisiae IC50 = 25.01 μM Acarbose (IC50 = 175.00 μM) [34]
Lisianthoside Toxicity Brine shrimp LC50 = 150 ppm Not reported [160]
Antifungal Cladosporium cucumcvinum No effect Propiconazole (MIC = 1 μg/mL) [209]
Antitumoral A549 (MTT assay) No effect Florouracil (IC50 = 0.177 μg/mL) [48]
Bel7402 (MTT assay) Florouracil (IC50 = 0.542 μg/mL)
BGC-823 (MTT assay) Florouracil (IC50 = 0.695 μg/mL)
HCT-8 (MTT assay) Florouracil (IC50 = 0.67 μg/mL)
A2780 (MTT assay) Florouracil (IC50 = 0.569 μg/mL)
Minutifloroside Antioxidant DPPH· Not reported Not reported [163]
Antifungal Candida albicans ATCC90028 MIC = 9.765 μg/mL Fluconazole (MIC not reported)
Candida glabrata ATCC90030 MIC = 1250 μg/mL
Neo-cornuside C Antidiabetic Relative glucose consumption in insulin-induced HepG2 cells EC50 = 1.275 μM Rosiglitazone (EC50 = 1.127 μM) [167]
Neo-cornuside D Antidiabetic Relative glucose consumption in insulin-induced HepG2 cells No effect Rosiglitazone (EC50 = 1.127 μM) [167]
Neo-cornuside F Antidiabetic Relative glucose consumption in insulin-induced HepG2 cells EC50 = 40.12 μM Rosiglitazone (EC50 = 3.35 μM) [167]
Officinaloside A Antibacterial Bacillus cereus MIC = 25 μg/mL Ampicillin (MIC = 6.25 μg/mL) [169]
Bacillus subtilis MIC = 12.5 μg/mL
Staphylococcus aureus MIC = 50 μg/mL Ampicillin (MIC = 12.5 μg/mL)
Escherichia coli No effect Ampicillin (No effect)
Oleonuezhenide Anti-inflammatory Inhibition of CD11b expression in cytochalasin A and f-MLP stimulated neutrophils Inhibition % = 2% (at the concentration of 50 μM) Quercetin (No effect) [103]
Oleuropein (Inhibition % = 19.5% at the concentration of 50 μM)
Inhibition of ROS production in f-MLP stimulated neutrophils Inhibition % = 42.4% (at the concentration of 50 μM) Quercetin (Inhibition % = 93.2% at the concentration of 50 μM)
Oleuropein (Inhibition % = 73.7% at the concentration of 50 μM)
Inhibition of IL-8 expression in LPS stimulated macrophages Inhibition % = 40% (at the concentration of 50 μM) Quercetin (Inhibition % = 78.3% at the concentration of 50 μM)
Oleuropein (Inhibition % = 13.5% at the concentration of 50 μM)
Induction of IL-10 expression in LPS stimulated macrophages Induction % = +89.6% (at the concentration of 50 μM) Oleuropein (Induction % = +172% at the concentration of 50 μM)
Inhibition of TNF-α expression in LPS stimulated macrophages Inhibition % = 10.9% (at the concentration of 50 μM) Quercetin (Inhibition % = 91.1% at the concentration of 50 μM)
Oleuropein (Inhibition % = 71.7% at the concentration of 50 μM)
Enzymatic MMP-2 IC50 < 100 μM Doxycycline (IC50 > 100 μM) [122]
MMP-9 IC50 < 100 μM
Pain killing Induction of ERK and CREB phosphorylation in primary cortical neuron No effect Not reported [116]
Neuroptrection 6-OHDA-induced in SH-SY5Y cells Relative protection % = 42.8 (at the concentration of 10 μg/mL) EGGG (Relative protection % = 72.0 at the concentration of 10 μg/mL) [172]
NGF secretion in C6 cells Secretion % = 72.39% (at the concentration of 50 μg/mL) 6-shogaol (Secretion % = 168.58%) [142]
Osteogenic MC3T3-E1 proliferation Proliferation % = 10% (at the concentration of 5 μM) Alendronate sodium (cell proliferation % = 5% at the concentration of 5 μM) [175]
ALP in MC3T3-E1 cells Activity % = +25% (at the concentration of 5 μM) Alendronate sodium (activity % = +10% (at the concentration of 5 μM)
Paederoscandoside Anti-inflammatory Inhibition of NO production in LPS-activated RAW264.7 macrophage cells IC50 = 37.41 μM Indomethacin (IC50 = 23.93 μM) [108]
Patriscabiobisin A Antitumoral HL-60 (MTT assay) IC50 = 17.9 μM Cisplatin (IC50 = 2.8 μM) [181]
Paclitaxel (IC50 < 0.008 μM)
SMMC-7721 (MTT assay) IC50 = 19.7 μM Cisplatin (IC50 = 5.9 μM)
Paclitaxel (IC50 < 0.008 μM)
MCF-7 (MTT assay) IC50 = 23.9 μM Cisplatin (IC50 = 20.4 μM)
Paclitaxel (IC50 < 0.008 μM)
SW-480 (MTT assay) IC50 = 17.6 μM Cisplatin (IC50 = 7.6 μM)
Paclitaxel (IC50 < 0.008 μM)
Enzymatic Acetylcholinesterase Inhibitory % = 36.03% (at the concentration of 50 μM) Tacrine (Inhibitory % = 51.01% at the concentration of 0.4 μM)
Patriscabiobisin B Antitumoral HL-60 (MTT assay) No effect Cisplatin (IC50 = 2.8 μM)
Paclitaxel (IC50 < 0.008 μM)
[181]
SMMC-7721 (MTT assay) Cisplatin (IC50 = 5.9 μM)
Paclitaxel (IC50 < 0.008 μM)
MCF-7 (MTT assay) Cisplatin (IC50 = 20.4 μM)
Paclitaxel (IC50 < 0.008 μM)
SW-480 (MTT assay) Cisplatin (IC50 = 7.6 μM)
Paclitaxel (IC50 < 0.008 μM)
Enzymatic Acetylcholinesterase Inhibitory % = 21.91% (at the concentration of 50 μM) Tacrine (Inhibitory % = 51.01% at the concentration of 0.4 μM)
Patriscabiobisin C Antitumoral HL-60 (MTT assay) No effect Cisplatin (IC50 = 2.8 μM) [181]
Paclitaxel (IC50 < 0.008 μM)
HL-60 Not reported [182]
SMMC-7721 (MTT assay) No effect Cisplatin (IC50 = 5.9 μM) [181]
Paclitaxel (IC50 < 0.008 μM)
SMMC-7721 Not reported [182]
MCF-7 (MTT assay) No effect Cisplatin (IC50 = 20.4 μM) [181]
Paclitaxel (IC50 < 0.008 μM)
MCF-7 Not reported [182]
SW-480 (MTT assay) No effect Cisplatin (IC50 = 7.6 μM) [181]
Paclitaxel (IC50 < 0.008 μM)
SW-480 No effect Not reported [182]
Enzymatic Acetylcholinesterase Inhibitory % = 37.87% (at the concentration of 50 μM) Tacrine (Inhibitory % = 51.01% at the concentration of 0.4 μM) [181]
Phukettoside A Antioxidant DPPH· No effect Ascorbic acid (IC50 = 32.2 μM) [183]
Xanthine oxidase Allopurinol (IC50 = 4.6 μM)
HL-60 antioxidant Superoxide dismutase (Inhibition % = 100% at the dose of 60 U/mL)
LOX Nor-dihydro-guaiaretic acid (IC50 = 4.5 μM)
Aromatase Letrozole (IC50 = 1.4 nM)
Superoxide anion radical formation (XXO assay) Gallic acid (IC50 = 2.9 μM)
Antitumoral HuCCA-1 (MTT assay) No effect Doxorubicin (IC50 = 0.79 μM)
A549 (MTT assay) Doxorubicin (IC50 = 0.19 μM)
HeLa (MTT assay) Doxorubicin (IC50 = 0.16 μM)
HepG2 (MTT assay) Doxorubicin (IC50 = 0.33 μM)
MRC-5 (MTT assay) Doxorubicin (IC50 = 1.31 μM)
MDA-MB-231 Doxorubicin (IC50 = 1.18 μM)
MOLT-3 Etoposide (IC50 = 0.018 μM)
Phukettoside B Antioxidant DPPH· No effect Ascorbic acid (IC50 = 32.2 μM) [183]
Xanthine oxidase Allopurinol (IC50 = 4.6 μM)
HL-60 antioxidant Superoxide dismutase (Inhibition % = 100% at the dose of 60 U/mL)
LOX Nor-dihydro-guaiaretic acid (IC50 = 4.5 μM)
Aromatase Letrozole (IC50 = 1.4 nM)
Superoxide anion radical formation (XXO assay) Gallic acid (IC50 = 2.9 μM)
Antitumoral HuCCA-1 (MTT assay) No effect Doxorubicin (IC50 = 0.79 μM)
A549 (MTT assay) Doxorubicin (IC50 = 0.19 μM)
HeLa (MTT assay) Doxorubicin (IC50 = 0.16 μM)
HepG2 (MTT assay) Doxorubicin (IC50 = 0.33 μM)
MRC-5 (MTT assay) Doxorubicin (IC50 = 1.31 μM)
MDA-MB-231 Doxorubicin (IC50 = 1.18 μM)
MOLT-3 Etoposide (IC50 = 0.018 μM)
Phukettoside C Antioxidant DPPH· No effect Ascorbic acid (IC50 = 32.2 μM) [183]
Xanthine oxidase Allopurinol (IC50 = 4.6 μM)
HL-60 antioxidant Superoxide dismutase (Inhibition % = 100% at the dose of 60 U/mL)
LOX Nor-dihydro-guaiaretic acid (IC50 = 4.5 μM)
Aromatase Letrozole (IC50 = 1.4 nM)
Superoxide anion radical formation (XXO assay) Gallic acid (IC50 = 2.9 μM)
Antitumoral HuCCA-1 (MTT assay) No effect Doxorubicin (IC50 = 0.79 μM)
A549 (MTT assay) Doxorubicin (IC50 = 0.19 μM)
HeLa (MTT assay) Doxorubicin (IC50 = 0.16 μM)
HepG2 (MTT assay) Doxorubicin (IC50 = 0.33 μM)
MRC-5 (MTT assay) Doxorubicin (IC50 = 1.31 μM)
MDA-MB-231 Doxorubicin (IC50 = 1.18 μM)
MOLT-3 Etoposide (IC50 = 0.018 μM)
Phukettoside D Antioxidant DPPH· No effect Ascorbic acid (IC50 = 32.2 μM) [183]
Xanthine oxidase Allopurinol (IC50 = 4.6 μM)
HL-60 antioxidant Superoxide dismutase (Inhibition % = 100% at the dose of 60 U/mL)
LOX Nor-dihydro-guaiaretic acid (IC50 = 4.5 μM)
Aromatase Letrozole (IC50 = 1.4 nM)
Superoxide anion radical formation (XXO assay) Gallic acid (IC50 = 2.9 μM)
Antitumoral HuCCA-1 (MTT assay) No effect Doxorubicin (IC50 = 0.79 μM)
A549 (MTT assay) Doxorubicin (IC50 = 0.19 μM)
HeLa (MTT assay) Doxorubicin (IC50 = 0.16 μM)
HepG2 (MTT assay) Doxorubicin (IC50 = 0.33 μM)
MRC-5 (MTT assay) Doxorubicin (IC50 = 1.31 μM)
MDA-MB-231 Doxorubicin (IC50 = 1.18 μM)
MOLT-3 Etoposide (IC50 = 0.018 μM)
Picconioside I Enzymatic A-glucosidase Inhibition % = 63.8% Acarbose (Inhibition % = 95.1%) [185]
Picrorhizaoside E Enzymatic Hyaluronidase IC50 = 35.8 μg/mL Disodium cromoglycate (IC50 = 64.8 μg/mL) [186]
Ketotifen fumarate (IC50 = 76.5 μg/mL)
Tranilast (IC50 = 227 μg/mL)
Picrorhizaoside F Enzymatic Hyaluronidase No effect Disodium cromoglycate (IC50 = 64.8 μg/mL) [186]
Ketotifen fumarate (IC50 = 76.5 μg/mL)
Tranilast (IC50 = 227 μg/mL)
Picrorhizaoside G Enzymatic Hyaluronidase No effect Disodium cromoglycate (IC50 = 64.8 μg/mL) [186]
Ketotifen fumarate (IC50 = 76.5 μg/mL)
Tranilast (IC50 = 227 μg/mL)
Ptehoside C Antitumoral Caco2 (MTT assay) No effect Paclitaxel (IC50 = 2.63 μM) [24]
Huh-7 (MTT assay) Paclitaxel (IC50 = 1.71 μM)
SW982 (MTT assay) Paclitaxel (IC50 = 1.99 μM)
Ptehoside D Antitumoral Caco2 (MTT assay) No effect Paclitaxel (IC50 = 2.63 μM) [24]
Huh-7 (MTT assay) Paclitaxel (IC50 = 1.71 μM)
SW982 (MTT assay) Paclitaxel (IC50 = 1.99 μM)
Ptehoside E Antitumoral Caco2 (MTT assay) No effect Paclitaxel (IC50 = 2.63 μM) [24]
Huh-7 (MTT assay) Paclitaxel (IC50 = 1.71 μM)
SW982 (MTT assay) Paclitaxel (IC50 = 1.99 μM)
Ptehoside F Antitumoral Caco2 (MTT assay) No effect Paclitaxel (IC50 = 2.63 μM) [24]
Huh-7 (MTT assay) Paclitaxel (IC50 = 1.71 μM)
SW982 (MTT assay) Paclitaxel (IC50 = 1.99 μM)
Ptehoside G Antitumoral Caco2 (MTT assay) No effect Paclitaxel (IC50 = 2.63 μM) [24]
Huh-7 (MTT assay) Paclitaxel (IC50 = 1.71 μM)
SW982 (MTT assay) Paclitaxel (IC50 = 1.99 μM)
Ptehoside H Antitumoral Caco2 (MTT assay) No effect Paclitaxel (IC50 = 2.63 μM) [24]
Huh-7 (MTT assay) Paclitaxel (IC50 = 1.71 μM)
SW982 (MTT assay) Paclitaxel (IC50 = 1.99 μM)
Pterocephaline Anti-inflammatory Inhibition of LPS-induced NO production in RAW264.7 macrophages No effect Not reported [101]
Pterocenoid B Anti-inflammatory Inhibition of NO release in RAW264.7 macrophages IC50 = 36.0 μM Quercetin (IC50 = 22.8 μM) [193]
Inhibition of the production of TNF-α in in LPS-induced RAW264.7 macrophages Inhibition %~60% (at the concentration of 50 μM) Not reported
Inhibition of TNF-induced NF-κB activation in a luciferase reporter gene Not reported Not reported [192]
Pterocenoid C Anti-inflammatory Inhibition of TNF-induced NF-κB activation in a luciferase reporter gene Not reported Not reported [192]
Pterocenoid E Anti-inflammatory Inhibition of NO release in RAW264.7 macrophages No effect Quercetin (IC50 = 22.8 μM) [193]
Pterocenoid F Anti-inflammatory Inhibition of NO release in RAW264.7 macrophages No effect Quercetin (IC50 = 22.8 μM) [193]
Pterocenoid G Anti-inflammatory Inhibition of NO release in RAW264.7 macrophages No effect Quercetin (IC50 = 22.8 μM) [193]
Pterocenoid H Anti-inflammatory Inhibition of NO release in RAW264.7 macrophages No effect Quercetin (IC50 = 22.8 μM) [193]
Pteroceside A Enzymatic α-glucosidase from Saccharomyces cerevisiae IC50 = 38.46 μM Acarbose (IC50 = 175.00 μM) [34]
Pteroceside C Enzymatic α-glucosidase from Saccharomyces cerevisiae IC50 = 82.01 μM Acarbose (IC50 = 175.00 μM) [34]
Pubescensoside Antitumoral A459 (MTT assay) IC50 = 13.9 μg/mL Not reported [194]
Rapulaside A Platelet aggregation Effect after induction by PAF in rabbits Aggregation % = 42.9% BN52021 (Aggregation % = 0.6%) [200]
Effect after induction by AA in rabbits Aggregation % = 69.2% Aspirin (Aggregation % = 4.7%)
Effect after induction by ADP in rabbits Aggregation % = 68.9% Aspirin (Aggregation % = 65.9%)
Rapulaside B Platelet aggregation Effect after induction by PAF in rabbits Aggregation % = 53.9% BN52021 (Aggregation % = 0.6%) [200]
Effect after induction by AA in rabbits Aggregation % = 73.6% Aspirin (Aggregation % = 4.7%)
Effect after induction by ADP in rabbits Aggregation % = 66.8% Aspirin (Aggregation % = 65.9%)
Reticunin A Anti-inflammatory Inhibition of NO production in LPS-stimulated RAW264.7 macrophages No effect Indomethacin (IC50 = 46.71 μg/mL) [201]
Reticunin B Anti-inflammatory Inhibition of NO production in LPS-stimulated RAW264.7 macrophages No effect Indomethacin (IC50 = 46.71 μg/mL) [201]
Rotunduside Antibacterial Inhibitory activity on MRB (chemiluminescence) IC50 = 198.09 μmol/L Rutin (IC50 = 15.07 μmol/L) [202]
Dexamethasone (IC50 = 355.14 μmol/L)
Rotundoside A Antibacterial Inhibitory activity on MRB (chemiluminescence) IC50 = 217.13 μmol/L Rutin (IC50 = 15.07 μmol/L) [203]
Dexamethasone (IC50 = 355.14 μmol/L)
Saprosmoside E Anti-inflammatory Inhibition of NO production in LPS-activated RAW264.7 macrophage cells No effect Indomethacin (IC50 = 23.93 μM) [108]
Saprosmoside F Anti-inflammatory Inhibition of NO production in LPS-activated RAW264.7 macrophage cells IC50 = 39.57 μM Indomethacin (IC50 = 23.93 μM) [108]
Saungmaygaoside A Antiviral Inhibition of the expression of Vpr in TREx-HeLa-Vpr cells Cell proliferation % = 79% (at the concentration of 10 μM) Damnacanthal (Cell proliferation % = 158% at the concentration of 10 μM) [23]
Saungmaygaoside B Antiviral Inhibition of the expression of Vpr in TREx-HeLa-Vpr cells Cell proliferation % = 105% (at the concentration of 10 μM)
Saungmaygaoside C Antiviral Inhibition of the expression of Vpr in TREx-HeLa-Vpr cells Cell proliferation % = 120% (at the concentration of 10 μM)
Saungmaygaoside D Antiviral Inhibition of the expression of Vpr in TREx-HeLa-Vpr cells Cell proliferation % = 144% (at the concentration of 10 μM)
Sclerochitonoside C Insecticidal Mortality of immature Frankliniella occidentalis Mortality % = 15% (at the concentration of 0.10 mM) Not reported [208]
Seemannoside A Antifungal Cladosporium cucumcvinum No effect Propiconazole (MIC = 1 μg/mL) [209]
Seemannoside B Antifungal Cladosporium cucumcvinum No effect Propiconazole (MIC = 1 μg/mL) [209]
Septemfidoside Antioxidant DPPH· No effect Ascorbic acid (IC50 = 6.3 μg/mL) [12]
Antibacterial Enterococcus faecalis ATCC1054 MIC = 125 μg/mL Gentamycin (MIC = 16 μg/mL)
Vancomycin (MIC > 64 μg/mL)
Staphylococcus aureus CIP53.154 MIC = 250 μg/mL Gentamycin (MIC = 4 μg/mL)
Vancomycin (MIC > 64 μg/mL)
Escherichia coli CIP54.127 MIC = 500 μg/mL Gentamycin (MIC = 4 μg/mL)
Vancomycin (MIC > 16 μg/mL)
Staphylococcus epidermis MIC = 250 μg/mL Gentamycin (MIC = 0.25 μg/mL)
Vancomycin (MIC = 4 μg/mL)
Pseudomonas aeruginosa ATCC9027 MIC = 250 μg/mL Gentamycin (MIC = 8 μg/mL)
Vancomycin (MIC > 64 μg/mL)
Antitumoral HT1080 (MTT assay) No effect Not reported
Enzymatic Mushroom anti-tyrosinase No effect Kojic acid (IC50 = 6.8 μg/mL)
Sylvestroside I Antioxidant DPPH· No effect Ascorbic acid (IC50 = 6.3 μg/mL) [12]
Antibacterial Enterococcus faecalis ATCC1054 MIC = 500 μg/mL Gentamycin (MIC = 16 μg/mL)
Vancomycin (MIC > 64 μg/mL)
Staphylococcus aureus CIP53.154 MIC = 62.5 μg/mL Gentamycin (MIC = 4 μg/mL)
Vancomycin (MIC > 64 μg/mL)
Escherichia coli CIP54.127 MIC = 62.5 μg/mL Gentamycin (MIC = 4 μg/mL)
Vancomycin (MIC > 16 μg/mL)
Staphylococcus epidermis MIC = 125 μg/mL Gentamycin (MIC = 0.25 μg/mL)
Vancomycin (MIC = 4 μg/mL)
Pseudomonas aeruginosa ATCC9027 MIC = 125 μg/mL Gentamycin (MIC = 8 μg/mL)
Vancomycin (MIC > 64 μg/mL)
Antitumoral HT1080 (MTT assay) No effect Not reported
Enzymatic Mushroom anti-tyrosinase No effect Kojic acid (IC50 = 6.8 μg/mL)
Spasmolytic Inhibitory effects on the electrically-induced contractions in guinea-pig ileum Inhibition % > 45% (at the concentration of 0.001 M) Vancomycin (MIC > 64 μg/mL) [218]
Anti-inflammatory Inhibition of NO production in LPS-activated RAW264.7 macrophage cells IC50 > 50 μM L-NMMA (IC50 = 22.6 μM) [50]
IC50 = 101.42 μM L-NMMA (IC50 = 19.36 μM) [65]
Sylvestroside III Spasmolytic Inhibitory effects on the electrically-induced contractions in guinea-pig ileum Inhibition % > 40% (at the concentration of 0.001 M) Vancomycin (MIC > 64 μg/mL) [218]
Sylvestroside IV Antitumoral Caco2 (MTT assay) IC50 = 7.27 μM Paclitaxel (IC50 = 2.63 μM) [24]
Huh-7 (MTT assay) IC50 = 11.41 μM Paclitaxel (IC50 = 1.71 μM)
SW982 (MTT assay) IC50 = 7.23 μM Paclitaxel (IC50 = 1.99 μM)
Sylvestroside IV dimethyl acetal Antiviral Inhibition of the expression of Vpr in TREx-HeLa-Vpr cells Cell proliferation % = 171% (at the concentration of 10 μM) Damnacanthal (Cell proliferation % = 158% at the concentration of 10 μM) [23]
Antitumoral Caco2 (MTT assay) No effect Paclitaxel (IC50 = 2.63 μM) [24]
Huh-7 (MTT assay) No effect Paclitaxel (IC50 = 1.71 μM)
SW982 (MTT assay) No effect Paclitaxel (IC50 = 1.99 μM)
Swerilactone A Antiviral HBV virus (inhibition of the secretion of HBsAg in HepG 2.2.15 cells) IC50 = 3.66 mM Not reported [215]
HBV virus (inhibition of the secretion of HBeAg in HepG 2.2.15 cells) IC50 = 3.58 mM
Swerilactone B Antiviral HBV virus (inhibition of the secretion of HBsAg in HepG 2.2.15 cells) No effect Not reported [215]
HBV virus (inhibition of the secretion of HBeAg in HepG 2.2.15 cells)
Swertianoside A Antiviral Hepatitis B virus effects (inhibition on the secretion of HBsAg) IC50 = 0.18 mM Tenofovir (IC50 = 1.31 mM) [217]
Hepatitis B virus effects (inhibition on the secretion of HBeAg) IC50 = 0.12 mM Tenofovir (IC50 = 1.15 mM) [217]
Triplostoside A Anti-inflammatory Inhibition of NO production in LPS-activated RAW264.7 macrophage cells No effect Not reported [106]
No effect L-NMMA (IC50 = 19.36 μM) [65]
IC50 > 50 μM L-NMMA (IC50 = 22.6 μM) [50]
Antitumoral A549 (MTT assay) No effect Florouracil (IC50 = 0.177 μg/mL) [48]
Bel7402 (MTT assay) Florouracil (IC50 = 0.542 μg/mL)
BGC-823 (MTT assay) Florouracil (IC50 = 0.695 μg/mL)
HCT-8 (MTT assay) Florouracil (IC50 = 0.67 μg/mL)
A2780 (MTT assay) Florouracil (IC50 = 0.569 μg/mL)
Valeridoid B Antitumoral GSC-3 (MTT assay) No effect Not reported [233]
GSC-12 (MTT assay)
GSC-18 (MTT assay)
Valeridoid C Antitumoral GSC-3 (MTT assay) No effect Not reported [233]
GSC-12 (MTT assay)
GSC-18 (MTT assay)
Valeridoid D Antitumoral GSC-3 (MTT assay) No effect Not reported [233]
GSC-12 (MTT assay)
GSC-18 (MTT assay)
Valeridoid E Antitumoral GSC-3 (MTT assay) No effect Not reported [233]
GSC-12 (MTT assay)
GSC-18 (MTT assay)
Valeridoid F Antitumoral GSC-3 (MTT assay) IC50 = 42.42 μM Not reported [233]
GSC-12 (MTT assay) IC50 = 41.4 μM
GSC-18 (MTT assay) IC50 = 47.55 μM

Legend: DIZ = diameter of inhibition zone; EC50 = half-maximal effective response; IC50 = half-maximal inhibitory concentration; LC50 = half-maximal lethal concentration; MIC = minimum inhibitory concentration.

Only one hundred and fifty-nine bis-iridoids have been studied for their biological activities. The highest number of biological studies has been observed for sylvestroside I, whereas cantleyoside is the compound presenting the highest number of biological studies for the same type. Conversely, only one type of biological assay has been performed for several bis-iridoids. Among the types, not all of them have been performed with the enzymatic assay as the major one. Not all the bis-iridoids have shown biological activity, and some have shown activities only for some assays, with effectiveness values both higher and lower than the positive controls when present. No clear preference of bis-iridoids for a specific biological activity among the studied ones has been observed, given that they exert, at least, one, except immunosuppressive. However, bis-iridoids have mostly shown anti-inflammatory, antibacterial, antiviral and enzymatic inhibitory effects, which are in perfect agreement with those reported for simple iridoids [9,242]. In-depth structure—activity relation speeches are not so easy to perform at the moment, because biological studies on bis-iridoids have been few, too sectorial and generally not specific from this point of view. Nevertheless, a generic conclusion from the careful observation of Table 2 indicates that the presence and the type of substituent, as well as the type of sub-unity, greatly affect the activity and the effectiveness of bis-iridoids, as already observed for simple iridoids [9,242]. At the moment, the comparison of the effectiveness values between bis-iridoids and simple iridoids cannot be performed as well, for the same previous reasons but also because some bis-iridoids are unconventionally structured (there is no base structure to compare to), almost all bis-iridoids are constituted by different sub-units (it is impossible to establish the starting compound) and the bond between the sub-units of bis-iridoids transforms the base structure and modifies its geometry (the comparison may not be reliable due to possible different mechanisms of action). Under all these last aspects, it is obvious that bis-iridoids need to be further studied.

5. Conclusions

In this review paper, two hundred and eighty-eight bis-iridoids have been listed and detailed with their occurrence in plants and the methodologies of extraction, isolation and identification and also one hundred and fifty-nine out of these with their biological activities. The bis-iridoids reported so far in the literature are mainly characterized by the link between two seco-iridoids sub-units under the structural profile and mostly exert anti-inflammatory, antibacterial, antiviral and enzymatic inhibitory activities, both with good and low effectiveness values. The chemophenetic evaluation has allowed to individuate cantleyoside, laciniatosides, sylvestrosides and GI3 and GI5 as chemophenetic markers for the Caprifoliaceae and Oleaceae families, respectively, and oleonuezhenide and (Z)-aldosecologanin and centauroside as chemophenetic markers for the Ligustrum and Lonicera genus, respectively. Yet, many aspects of bis-iridoids are still to be discovered, elucidated and completed, and this review paper, meaning to work as a multi-comprehensive database for the future, has clearly proven this.

Author Contributions

Conceptualization, C.F.; investigation, C.F., A.V., D.D.V., M.G. and A.B.; writing—original draft preparation, C.F., A.V., D.D.V., M.G. and A.B.; writing—review and editing, C.F., A.V., D.D.V., M.G. and A.B. All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest

The authors declare no conflicts of interest.

Funding Statement

This research received no external funding.

Footnotes

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

References

  • 1.Bianco A. The Chemistry of Iridoids. Stud. Nat. Prod. Chem. 1990;7:439–487. [Google Scholar]
  • 2.Dinda B., Debnath S., Harigaya Y. Naturally occurring iridoids. A review, part 1. Chem. Pharm. Bull. 2007;55:159–222. doi: 10.1248/cpb.55.159. [DOI] [PubMed] [Google Scholar]
  • 3.Dinda B., Debnath S., Harigaya Y. Naturally occurring secoiridoids and bioactivity of naturally occurring iridoids and secoiridoids. A review, Part 2. Chem. Pharm. Bull. 2007;55:689–728. doi: 10.1248/cpb.55.689. [DOI] [PubMed] [Google Scholar]
  • 4.Dinda B., Chowdhury D.R., Mohanta B.C. Naturally occurring iridoids, secoiridoids and their bioactivity. An updated review, part 3. Chem. Pharm. Bull. 2009;57:765–796. doi: 10.1248/cpb.57.765. [DOI] [PubMed] [Google Scholar]
  • 5.Dinda B., Debnath S., Banika R. Naturally occurring iridoids and secoiridoids. An updated review, part 4. Chem. Pharm. Bull. 2011;59:803–833. doi: 10.1248/cpb.59.803. [DOI] [PubMed] [Google Scholar]
  • 6.Inouye H., Uesato S. In: Progress in the Chemistry of Organic Natural Products. Zechmeister L., Herz W., editors. Volume 50. Springer; New York, NY, USA: 1986. p. 169. [Google Scholar]
  • 7.Ghisalberti E.L. Biological and pharmacological activity of naturally occurring iridoids and secoiridoids. Phytomedicine. 1998;5:147–163. doi: 10.1016/S0944-7113(98)80012-3. [DOI] [PubMed] [Google Scholar]
  • 8.Tundis R., Loizzo M.R., Menichini F., Statti G.A., Menichini F. Biological and pharmacological activities of iridoids: Recent developments. Mini-Rev. Med. Chem. 2008;8:399–420. doi: 10.2174/138955708783955926. [DOI] [PubMed] [Google Scholar]
  • 9.Wang C., Gong X., Bo A., Zhang L., Zhang M., Zang E., Zhang C., Li M. Iridoids: Research advances in their phytochemistry, biological activities, and pharmacokinetics. Molecules. 2020;25:287. doi: 10.3390/molecules25020287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Mao X.-D., Chou G.-X., Zhao S.-M., Zhang C.-G. New iridoid glucosides from Caryopteris incana (Thunb.) Miq. and their α-glucosidase inhibitory activities. Molecules. 2016;21:1749. doi: 10.3390/molecules21121749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Tomassini L., Fddai S., Serafini M., Cometa M.F. Bis-iridoid glucosides from Abelia chinensis. J. Nat. Prod. 2000;63:998–999. doi: 10.1021/np9904713. [DOI] [PubMed] [Google Scholar]
  • 12.Lehbili M., Magid A.A., Hubert J., Kabouche A., Voutquenne-Nazabadioko L., Renault J.-H., Nuzillard J.-M., Morjani H., Abedini A., Gangloff S.C., et al. Two new bis-iridoids isolated from Scabiosa stellata and their antibacterial, antioxidant, anti-tyrosinase and cytotoxic activities. Fitoterapia. 2018;125:41–48. doi: 10.1016/j.fitote.2017.12.018. [DOI] [PubMed] [Google Scholar]
  • 13.Machida K., Sasaki H., Iijima T., Kikuchi M. Studies on the constituents of Lonicera species. XVII. New iridoid glycosides of the stems and leaves of Lonicera japonica Thunb. Chem. Pharm. Bull. 2002;50:1041–1044. doi: 10.1248/cpb.50.1041. [DOI] [PubMed] [Google Scholar]
  • 14.Chulia A.J., Vercauterent J., Mariotte A.M. Iridoids and flavones from Gentiana depressa. Phytochemistry. 1996;42:139–143. doi: 10.1016/0031-9422(95)00900-0. [DOI] [Google Scholar]
  • 15.Liu Z.-X., Liu C.-T., Liu Q.-B., Ren J., Li L.-Z., Huang X.-X., Wang Z.-Z., Song S.-J. Iridoid glycosides from the flower buds of Lonicera japonica and their nitric oxide production and α-glucosidase inhibitory activities. J. Funct. Foods. 2015;18:512–519. doi: 10.1016/j.jff.2015.08.017. [DOI] [Google Scholar]
  • 16.Yang R., Hao H., Li J., Xuan J., Xia M.-F., Zhang Y.-Q. Three new secoiridoid glycosides from the flower buds of Lonicera japonica. Chin. J. Nat. Med. 2020;18:70–74. doi: 10.1016/S1875-5364(20)30006-6. [DOI] [PubMed] [Google Scholar]
  • 17.Zhang J., Huang S., Shan L., Chen L., Zhang Y., Zhou X. New iridoid glucoside from Pterocephalus hookeri. Chin. J. Org. Chem. 2015;35:2441–2444. doi: 10.6023/cjoc201506001. [DOI] [Google Scholar]
  • 18.Zhang J., Yu X., Yang R., Zheng B., Zhang Y., Zhang F. Quality evaluation of Lonicerae Japonicae Flos from different origins based on high-performance liquid chromatography (HPLC) fingerprinting and multicomponent quantitative analysis combined with chemical pattern recognition. Phytochem. Anal. 2024;35:647–663. doi: 10.1002/pca.3319. [DOI] [PubMed] [Google Scholar]
  • 19.Wang Y., Li L., Ji W., Liu S., Fan J., Lu H., Wang X. Metabolomics analysis of different tissues of Lonicera japonica Thunb. based on liquid chromatography with mass spectrometry. Metabolites. 2023;13:186. doi: 10.3390/metabo13020186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Kang K.B., Kang S.-J., Kim M.S., Lee D.Y., Han S.I., Kim T.B., Park J.Y., Kim J., Yang T.-J., Sung S.H. Chemical and genomic diversity of six Lonicera species occurring in Korea. Phytochemistry. 2018;155:126–135. doi: 10.1016/j.phytochem.2018.07.012. [DOI] [PubMed] [Google Scholar]
  • 21.Wan J., Jiang C.-X., Tang Y., Ma G.-L., Tong Y.-P., Jin Z.-X., Zang Y., Osman E.E.A., Li J., Xiong J., et al. Structurally diverse glycosides of secoiridoid, bisiridoid, and triterpene-bisiridoid conjugates from the flower buds of two Caprifoliaceae plants and their ATP-citrate lyase inhibitory activities. Bioorg. Chem. 2022;120:105630. doi: 10.1016/j.bioorg.2022.105630. [DOI] [PubMed] [Google Scholar]
  • 22.Murai F., Tagawa M., Matsuda S., Kikuchis T., Uesato S., Inouye K. Abeliosides A And B, secoiridoid glucosides from Abelia grandiflora. Phytochemisty. 1985;24:2329–2335. doi: 10.1016/S0031-9422(00)83036-8. [DOI] [Google Scholar]
  • 23.Win N.N., Kodama T., Lae K.Z.W., Win Y.Y., Ngwe H., Abe I., Morita H. Bis-iridoid and iridoid glycosides: Viral protein R inhibitors from Picrorhiza kurroa collected in Myanmar. Fitoterapia. 2019;134:101–107. doi: 10.1016/j.fitote.2019.02.016. [DOI] [PubMed] [Google Scholar]
  • 24.Dong Z., Xiong Y., Zhang R., Qiu Y., Meng F., Liao Z., Lan X., Chen M. Ptehosides A-I: Nine undescribed iridoids with in vitro cytotoxicity from the whole plant of Pterocephalus hookeri (C.B. Clarke) Höeck. Phytochemistry. 2024;223:114144. doi: 10.1016/j.phytochem.2024.114144. [DOI] [PubMed] [Google Scholar]
  • 25.Itoh A., Fujii K., Tomatsu S., Takao C., Tanahashi T., Nagakura N., Chen C.-C. Six secoiridoid glucosides from Adina racemosa. J. Nat. Prod. 2003;66:1212–1216. doi: 10.1021/np030217h. [DOI] [PubMed] [Google Scholar]
  • 26.Hu J.-F., Starks C.M., Williams R.B., Rice S.M., Norman V.L., Olson K.M., Hough G.W., Goering M.G., ONeil-Johnson M., Eldridge G.R. Secoiridoid glycosides from the pitcher plant Sarracenia alata. Helv. Chim. Acta. 2009;92:273–280. doi: 10.1002/hlca.200800248. [DOI] [Google Scholar]
  • 27.Ghani E.M.A., El Sayed A.M., Tadros S.H., Soliman F.M. Chemical and biological analysis of the bioactive fractions of the leaves of Scaevola taccada (Gaertn.) Roxb. Int. J. Pharma. Pharm. Sci. 2021;13:35–41. doi: 10.22159/ijpps.2021v13i3.40257. [DOI] [Google Scholar]
  • 28.Bianco A., Guiso M., Martino M., Nicoletti M., Serafini M., Tomassini L., Mossa L., Poli F. Iridoids from endemic Sardinian Linaria species. Phytochemistry. 1996;42:89–91. doi: 10.1016/0031-9422(95)00892-6. [DOI] [Google Scholar]
  • 29.Bianco A., Passacantilli P., Righi G., Nicoletti M., Serafini M., Garbarino J.A., Gambaro V. Argylioside, a dimeric iridoid glucoside from Argylia radiata. Phytochemistry. 1986;25:946–948. doi: 10.1016/0031-9422(86)80033-4. [DOI] [Google Scholar]
  • 30.Bianco A., Marini E., Nicoletti M., Foddai S., Garbarino J.A., Piovano M., Chamy M.T. Bis-iridoid glucosides from the roots of Argylia radiata. Phytochemistry. 1992;31:4203–4206. doi: 10.1016/0031-9422(92)80443-I. [DOI] [Google Scholar]
  • 31.Müller A.A., Kufer K.K., Dietl K.G., Weigend M. A dimeric iridoid from Loasa acerifolia. Phytochemistry. 1998;49:1705–1707. doi: 10.1016/S0031-9422(98)00194-0. [DOI] [PubMed] [Google Scholar]
  • 32.Park A., Kim H.J., Lee J.S., Woo E.-R., Park H., Lee Y.S. New iridoids from Asperula maximowiczii. J. Nat. Prod. 2002;65:1363–1366. doi: 10.1021/np020017q. [DOI] [PubMed] [Google Scholar]
  • 33.Xu Y., Zeng J., Wang L., Xu Y., He X., Wang Y. Anti-inflammatory iridoid glycosides from Paederia scandens (Lour.) Merrill. Phytochemistry. 2023;212:113705. doi: 10.1016/j.phytochem.2023.113705. [DOI] [PubMed] [Google Scholar]
  • 34.Kılınc H., Masullo M., Lauro G., D’Urso G., Alankus O., Bifulco G., Piacente S. Scabiosa atropurpurea: A rich source of iridoids with α-glucosidase inhibitory activity evaluated by in vitro and in silico studies. Phytochemistry. 2023;205:113471. doi: 10.1016/j.phytochem.2022.113471. [DOI] [PubMed] [Google Scholar]
  • 35.Benkrief R., Ranarivelo Y., Skaltsounis A.-L., Tillequin F., Koch M., Pusset J., Sévenet T. Monoterpene alkaloids, iridoids and phenylpropanoid glycosides from Osmanthus ustrocaledonica. Phytochemistry. 1998;47:825–832. doi: 10.1016/S0031-9422(97)00994-1. [DOI] [Google Scholar]
  • 36.Itoh A., Tanaka Y., Nagakura N., Akita T., Nishi T., Tanahashi T. Phenolic and iridoid glycosides from Strychnos axillaris. Phytochemistry. 2008;69:1208–1214. doi: 10.1016/j.phytochem.2007.12.002. [DOI] [PubMed] [Google Scholar]
  • 37.Cuendet M., Hostettmann K., Potterat O., Dyatmiko W. Iridoid glucosides with free radical scavenging properties from Fagraea blumei. Helv. Chim. Acta. 1997;80:1144–1152. doi: 10.1002/hlca.19970800411. [DOI] [Google Scholar]
  • 38.Machida K., Asano J., Kikuchi M. Caeruleosides A and B, bis-iridoid glucosides from Lonicera caerulea. Phytochemistry. 1995;39:111–1140. doi: 10.1016/0031-9422(94)00853-L. [DOI] [Google Scholar]
  • 39.Sévenet T., Thal C., Potier P. Isolement et structure du cantleyoside: Nouveau glucoside terpénique de Cantleya corniculata (Becc.) Howard, (Icacinacées) Tetrahedron. 1971;27:663–668. doi: 10.1016/S0040-4020(01)90734-3. [DOI] [Google Scholar]
  • 40.Endo T., Sasaki H., Taguchi M.H. Studies on the constituents of Scabiosa japonica Miq. Yakugaku Zasshi. 1976;96:246–248. doi: 10.1248/yakushi1947.96.2_246. [DOI] [PubMed] [Google Scholar]
  • 41.Jensen W.R., Lyse-Petersen S.E., Nielsen B.J. Novel bis-iridoid glucosides from Dipsacus sylvestris. Phytochemistry. 1979;18:273–277. doi: 10.1016/0031-9422(79)80069-2. [DOI] [Google Scholar]
  • 42.Oszmiański J., Wojdyło A., Juszczyk P., Nowicka P. Roots and leaf extracts of Dipsacus fullonum L. and their biological activities. Plants. 2020;9:78. doi: 10.3390/plants9010078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Skaltsounis A.L., Sbahi S., Demetzos C., Pusset J. Plants in New Caledonia. Iridoids from Scaevola montana Labill. Ann. Pharma. Franc. 1989;47:249–254. [PubMed] [Google Scholar]
  • 44.Skaltsounis A.-L., Tillequin F., Koch M., Pusset J., Chauvière G. Iridoids from Scaevola racemigera. Planta Med. 1989;55:191–192. doi: 10.1055/s-2006-961922. [DOI] [PubMed] [Google Scholar]
  • 45.Kocsis Á., Szabó L.F., Podanyi B. New bis-iridoids from Dipsacus laciniatus. J. Nat. Prod. 1993;56:1486–1499. doi: 10.1021/np50099a007. [DOI] [Google Scholar]
  • 46.Pasi S., Aligiannis N., Chinou I.B., Skaltsounis A.L. Chemical constituents and their antimicrobial activity from the roots of Cephalaria ambrosioides. In: Rauter A.P., Palma F.B., Justino J., Araújo M.E., dos Santos S.P., editors. Natural Products in the New Millennium: Prospects and Industrial Application; Proceedings of the Phytochemical Society of Europe. Volume 47 Springer; Dordrecht, The Netherlands: 2002. [Google Scholar]
  • 47.Papalexandrou A., Magiatis P., Perdetzoglou D., Skaltsounis A.-L., Chinou I.B., Harvala C. Iridoids from Scabiosa variifolia (Dipsacaceae) growing in Greece. Biochem. Syst. Ecol. 2003;31:91–93. doi: 10.1016/S0305-1978(02)00070-4. [DOI] [Google Scholar]
  • 48.Tian X.-Y., Wang Y.-H., Liu H.-Y., Yu S.-S., Fang W.-S. On the chemical constituents of Dipsacus asper. Chem. Pharm. Bull. 2007;55:1677–1681. doi: 10.1248/cpb.55.1677. [DOI] [PubMed] [Google Scholar]
  • 49.Ji D., Zhang C., Li J., Yang H., Shen J., Yang Z. A new iridoid glycoside from the roots of Dipsacus asper. Molecules. 2012;17:1419–1424. doi: 10.3390/molecules17021419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Li F., Tanaka K., Watanabe S., Tezuka Y., Saiki I. Dipasperoside A, a novel pyridine alkaloid-coupled iridoid glucoside from the roots of Dipsacus asper. Chem. Pharm. Bull. 2013;61:1318–1322. doi: 10.1248/cpb.c13-00546. [DOI] [PubMed] [Google Scholar]
  • 51.Ling T., Liu K., Zhang Q., Liao L., Lu Y. High performance liquid chromatography coupled to electrospray ionization and quadrupole time-of-flight–mass spectrometry as a powerful analytical strategy for systematic analysis and improved characterization of the major bioactive constituents from Radix Dipsaci. J. Pharma. Biomed. Anal. 2014;98:120–129. doi: 10.1016/j.jpba.2014.05.006. [DOI] [PubMed] [Google Scholar]
  • 52.Sun X., Zhang Y., Yang Y., Liu J., Zheng W., Ma B., Guo B. Qualitative and quantitative analysis of furofuran lignans, iridoid glycosides, and phenolic acids in Radix Dipsaci by UHPLC-Q-TOF/MS and UHPLC-PDA. J. Pharma. Biomed. Anal. 2018;154:40–47. doi: 10.1016/j.jpba.2018.03.002. [DOI] [PubMed] [Google Scholar]
  • 53.Itoh A., Oya N., Kawaguchi E., Nishio S., Tanaka Y., Kawachi E., Akita T., Nishi T., Tanahashi T. Secoiridoid glucosides from Strychnos spinosa. J. Nat. Prod. 2005;68:1434–1436. doi: 10.1021/np058062w. [DOI] [PubMed] [Google Scholar]
  • 54.Itoh A., Tanaka Y., Nagakura N., Nishi T., Tanahashi T. A quinic acid ester from Strychnos lucida. J. Nat. Med. 2006;60:146–148. doi: 10.1007/s11418-005-0021-3. [DOI] [Google Scholar]
  • 55.Gülcemal D., Masullo M., Alankuş O., Ïkan Ç., Karayıldırım T., Şenol S.G., Piacente S., Bedir E. Monoterpenoid glucoindole alkaloids and iridoids from Pterocephalus pinardii. Magn. Reson. Chem. 2010;48:239–243. doi: 10.1002/mrc.2559. [DOI] [PubMed] [Google Scholar]
  • 56.Mustafayeva K., Mahiou-Leddet V., Suleymanov T., Kerimov Y., Ollivier E., Elias R. Chemical constituents from the roots of Cephalaria kotschyi. Chem. Nat. Compd. 2011;47:839–842. doi: 10.1007/s10600-011-0079-y. [DOI] [Google Scholar]
  • 57.Garaev E.E., Mahiou-Leddet V., Mabrouki F., Herbette G., Garaev E.A., Ollivier E. Chemical constituents from roots of Cephalaria media. Chem. Nat. Compd. 2014;50:756–758. doi: 10.1007/s10600-014-1075-9. [DOI] [Google Scholar]
  • 58.Wu Y., Yin Y., Li Y., Guo F., Zhu G. Secoiridoid/iridoid subtype bis-iridoids from Pterocephalus hookeri. Magn. Reson. Chem. 2014;52:734–738. doi: 10.1002/mrc.4116. [DOI] [PubMed] [Google Scholar]
  • 59.Chen Y., Yu H., Guo F., Wu Y., Li Y. Antinociceptive and anti-inflammatory activities of a standardized extract of bis-iridoids from Pterocephalus hookeri. J. Ethnopharmacol. 2018;216:233–238. doi: 10.1016/j.jep.2018.01.035. [DOI] [PubMed] [Google Scholar]
  • 60.Li G.-Q., Sheng D.-L. Chemical constituents from Pterocephalus hookeri and their neuroprotection activities. Chin. Trad. Pat. Med. 2018;12:1329–1335. [Google Scholar]
  • 61.Huang S., Zhang J., Shan L., Zhang Y., Zhou X. A novel tetrairidoid glucoside from Pterocephalus hookeri. Heterocycles. 2017;94:485–491. [Google Scholar]
  • 62.Guo C., Wu Y., Zhu Y., Wang Y., Tian L., Lu Y., Han C., Zhu G. In vitro and in vivo antitumor effects of n-butanol extracts of Pterocephalus hookeri on Hep3B cancer cell. Evid.-Based Complement. Altern. Med. 2015;2015:159132. doi: 10.1155/2015/159132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Shen X.-F., Zeng Y., Li J.-C., Tang C., Zhang Y., Meng X.-L. The anti-arthritic activity of total glycosides from Pterocephalus hookeri, a traditional Tibetan herbal medicine. Pharma. Biol. 2017;55:560–570. doi: 10.1080/13880209.2016.1263869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Tang C., Li H.-J., Fan G., Kuang T.-T., Meng X.-L., Zou Z.-M., Zhang Y. Network pharmacology and UPLC-Q-TOF/MS studies on the anti-arthritic mechanism of Pterocephalus hookeri. Tropic. J. Pharma. Res. 2018;17:1095–1110. doi: 10.4314/tjpr.v17i6.17. [DOI] [Google Scholar]
  • 65.Wang W.-X., Luo S.-Y., Wang Y., Xiang L., Liu X.-H., Tang C., Zhang Y. Pterocephanoside A, a new iridoid from a traditional Tibetan medicine, Pterocephalus hookeri. J. Asian Nat. Prod. Res. 2021;23:1189–1196. doi: 10.1080/10286020.2020.1860951. [DOI] [PubMed] [Google Scholar]
  • 66.Zeng Z., Sun Z., Wu C.-Y., Long F., Shen H., Zhou J., Li S.-L. Quality evaluation of Pterocephali Herba through simultaneously quantifying 18 bioactive components by UPLC-TQ-MS/MS analysis. J. Pharma. Biomed. Anal. 2024;238:115828. doi: 10.1016/j.jpba.2023.115828. [DOI] [PubMed] [Google Scholar]
  • 67.Abdullah F.O., Hussain F.H.S., Clericuzio M., Porta A., Vidari G. New iridoid dimer and other constituents from the traditional Kurdish plant Pterocephalus nestorianus Nábelek. Chem. Biodivers. 2017;14:e1600281. doi: 10.1002/cbdv.201600281. [DOI] [PubMed] [Google Scholar]
  • 68.Polat E., Alankus-Caliskan Ö., Karayildirim T., Bedir E. Iridoids from Scabiosa atropurpurea L. subsp. maritima Arc. (L.). Biochem. Syst. Ecol. 2010;38:253–255. doi: 10.1016/j.bse.2010.01.004. [DOI] [Google Scholar]
  • 69.Ben Toumia I., Sobeh M., Ponassi M., Banelli B., Dameriha A., Wink M., Chekir Ghedira L., Rosano C. A methanol extract of Scabiosa atropurpurea enhances doxorubicin cytotoxicity against resistant colorectal cancer cells in vitro. Molecules. 2020;25:5265. doi: 10.3390/molecules25225265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Graikou K., Aligiannis N., Chinou I.B., Harvala C. Cantleyoside-dimethyl-acetal and other iridoid glucosides from Pterocephalus perennis and antimicrobial activities. Z. Naturforsch. C. 2002;57:95–99. doi: 10.1515/znc-2002-1-217. [DOI] [PubMed] [Google Scholar]
  • 71.Takagi S., Yamaki M., Yumioka E., Nishimura T., Sakina K. Studies on the constituents of Erythraea centaurium (Linne) Persoon. 2. The structure of centauroside, a new bis-secoiridoid glucoside. Yakugaku Zasshi. 1982;102:313–317. doi: 10.1248/yakushi1947.102.4_313. [DOI] [Google Scholar]
  • 72.Ryuk J.A., Lee H.W., Ko B.S. Discrimination of Lonicera japonica and Lonicera confusa using chemical analysis and genetic marker. Kor. J. Herbol. 2012;7:15–21. doi: 10.6116/kjh.2012.27.6.15. [DOI] [Google Scholar]
  • 73.Cai Z., Liao H., Wang C., Chen J., Tan M., Mei Y., Wei L., Chen H., Yang R., Liu X. A comprehensive study of the aerial parts of Lonicera japonica Thunb. based on metabolite profiling coupled with PLS-DA. Phytochem. Anal. 2020;31:786–800. doi: 10.1002/pca.2943. [DOI] [PubMed] [Google Scholar]
  • 74.Song Y., Li S.-L., Wu M.-H., Li H.-J., Li P. Qualitative and quantitative analysis of iridoid glycosides in the flower buds of Lonicera species by capillary high performance liquid chromatography coupled with mass spectrometric detector. Anal. Chim. Acta. 2006;564:211–218. doi: 10.1016/j.aca.2006.01.068. [DOI] [Google Scholar]
  • 75.Chen J., Song Y., Li P. Capillary high-performance liquid chromatography with mass spectrometry for simultaneous determination of major flavonoids, iridoid glucosides and saponins in Flos Lonicerae. J. Chromatogr. A. 2007;1157:217–226. doi: 10.1016/j.chroma.2007.05.063. [DOI] [PubMed] [Google Scholar]
  • 76.Ren M.-T., Chen J., Song Y., Sheng L.-S., Li P., Qi L.-W. Identification and quantification of 32 bioactive compounds in Lonicera species by high performance liquid chromatography coupled with time-of-flight mass spectrometry. J. Pharma. Biomed. Anal. 2008;48:1351–1360. doi: 10.1016/j.jpba.2008.09.037. [DOI] [PubMed] [Google Scholar]
  • 77.Chen C.-Y., Qi L.-W., Li H.-Y., Li P., Yi L., Ma H.-L., Tang D. Simultaneous determination of iridoids, phenolic acids, flavonoids, and saponins in Flos Lonicerae and Flos Lonicerae Japonicae by HPLC-DAD-ELSD coupled with principal component analysis. J. Sep. Sci. 2007;30:3181–3192. doi: 10.1002/jssc.200700204. [DOI] [PubMed] [Google Scholar]
  • 78.Qian Z.-M., Li H.-J., Li P., Ren M.-T., Tang D. Simultaneous qualitation and quantification of thirteen bioactive compounds in Flos Lonicerae by High-Performance Liquid Chromatography with Diode Array Detector and Mass Spectrometry. Chem. Pharm. Bull. 2007;55:1073–1076. doi: 10.1248/cpb.55.1073. [DOI] [PubMed] [Google Scholar]
  • 79.Ryu S., Jeon J.-E., Kang G.W., Kang S.S., Shin J. Simultaneous analysis of bioactive metabolites from Lonicera japonica flower buds by HPLC-DAD-MS/MS. Yakhak Hoeji. 2008;52:446–451. [Google Scholar]
  • 80.Lee E.-J., Lee J.-Y., Kim J.-S., Kang S.-S. Phytochemical studies on Lonicerae flos (1)-isolation of iridoid glycosides and other constituents. Nat. Prod. Sci. 2010;16:32–38. [Google Scholar]
  • 81.Qi J., Chen Y.-H., Wang Y., Chen X., Wang L., Hu Y.-J., Yu B.-Y. Screening of peroxynitrite scavengers in Flos Lonicerae by using two new methods, an HPLC-DAD-CL technique and a peroxynitrite spiking test followed by HPLC-DAD analysis. Phytochem. Anal. 2016;27:57–63. doi: 10.1002/pca.2599. [DOI] [PubMed] [Google Scholar]
  • 82.Gu L., Xie X., Wang B., Jin Y., Wang L., Yin G., Wang J., Bi K., Wang T. Chemical pattern recognition for quality analysis of Lonicerae Japonicae Flos and Lonicerae Flos based on ultra-high performance liquid chromatography and anti-SARS-CoV2 main protease activity. Front. Pharmacol. 2022;12:810748. doi: 10.3389/fphar.2021.810748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Li R.-J., Kuang X.-P., Wang W.-J., Wan C.-P., Li W.-X. Comparison of chemical constitution and bioactivity among different parts of Lonicera japonica Thunb. J. Sci. Food Agric. 2020;100:614–622. doi: 10.1002/jsfa.10056. [DOI] [PubMed] [Google Scholar]
  • 84.Zhao H., Laib C., Zhang M., Zhou S., Liu Q., Wang D., Geng Y., Wang X. An improved 2D-HPLC-UF-ESI-TOF/MS approach for enrichment and comprehensive characterization of minor neuraminidase inhibitors from Flos Lonicerae Japonicae. J. Pharma. Biomed. Anal. 2019;175:112758. doi: 10.1016/j.jpba.2019.07.006. [DOI] [PubMed] [Google Scholar]
  • 85.Zhang X., Yu X., Sun X., Meng X., Fan J., Zhang F., Zhang Y. Comparative study on chemical constituents of different medicinal parts of Lonicera japonica Thunb. based on LC-MS combined with multivariate statistical analysis. Heliyon. 2024;10:e31722. doi: 10.1016/j.heliyon.2024.e31722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Ye J., Su J., Chen K., Liu H., Yang X., He Y., Zhang W. Comparative investigation on chemical constituents of flower bud, stem and leaf of Lonicera japonica Thunb. by HPLC–DAD–ESI–MS/MSn and GC–MS. J. Anal. Chem. 2014;69:777–784. doi: 10.1134/S1061934814080036. [DOI] [Google Scholar]
  • 87.Zidorn C., Ellmerer E.P., Ziller A., Stuppner H. Occurence of (E)-aldosecologanin in Kissenia capensis (Loasaceae) Biochem. Syst. Ecol. 2004;32:761–763. doi: 10.1016/j.bse.2003.12.006. [DOI] [Google Scholar]
  • 88.Chai X., Su Y.-F., Zheng Y.-H., Yan S.-L., Zhang X., Gao X.-M. Iridoids from the roots of Triosteum pinnatifidum. Biochem. Syst. Ecol. 2010;38:210–212. doi: 10.1016/j.bse.2009.12.037. [DOI] [Google Scholar]
  • 89.Ding Z., Liu Y., Ruan J., Yang S., Yu H., Chen M., Zhang Y., Wang T. Bioactive constituents from the whole plants of Gentianella acuta (Michx.) Hulten. Molecules. 2017;22:1309. doi: 10.3390/molecules22081309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Akşit H., Gozcü S., Altay A. Isolation and cytotoxic activities of undescribed iridoid and xanthone glycosides from Centaurium erythraea Rafn. (Gentianaceae) Phytochemistry. 2023;205:113484. doi: 10.1016/j.phytochem.2022.113484. [DOI] [PubMed] [Google Scholar]
  • 91.Wang Y., Wei Q., Yang L., Liu Z.-L. Iridoid glucosides from Chinese herb Lonicera chrysatha and their antitumor activity. J. Chem. Res. 2003:676–677. doi: 10.3184/030823403322656373. [DOI] [Google Scholar]
  • 92.Sang S., Liu G., He K., Zhu N., Dong Z., Zheng Q., Rosen R.T., Ho C.-T. New unusual iridoids from the leaves of noni (Morinda citrifolia L.) show inhibitory effect on ultraviolet B-induced transcriptional activator protein-1 (AP-1) activity. Bioorg. Med. Chem. 2003;11:2499–2502. doi: 10.1016/S0968-0896(03)00180-9. [DOI] [PubMed] [Google Scholar]
  • 93.Sunghwa F., Koketsu M. Phenolic and bis-iridoid glycosides from Strychnos cocculoides. Nat. Prod. Res. 2009;23:1408–1415. doi: 10.1080/14786410902750969. [DOI] [PubMed] [Google Scholar]
  • 94.Yu Z.-P., Wang Y.-Y., Yu S.-J., Bao J., Yu J.-H., Zhang H. Absolute structure assignment of an iridoid-monoterpenoid indole alkaloid hybrid from Dipsacus asper. Fitoterapia. 2019;135:99–106. doi: 10.1016/j.fitote.2019.04.015. [DOI] [PubMed] [Google Scholar]
  • 95.Magiatis P., Skaltsounis A.-L., Tillequin F., Seguin E., Cosson J.-P. Coelobillardin, an iridoid glucoside dimer from Coelospermum billardieri. Phytochemistry. 2002;60:415–418. doi: 10.1016/S0031-9422(02)00118-8. [DOI] [PubMed] [Google Scholar]
  • 96.Gao R.-R., Liu Z.-F., Yang X.-F., Song Y.-L., Cui X.-Y., Yang J.-Y., Lu C.-H., Shen Y.-M. Specialised metabolites as chemotaxonomic markers of Coptosapelta diffusa, supporting its delimitation as sisterhood phylogenetic relationships with Rubioideae. Phytochemistry. 2021;192:112929. doi: 10.1016/j.phytochem.2021.112929. [DOI] [PubMed] [Google Scholar]
  • 97.Hao Z.-Y., Wang X.-L., Yang M., Cao B., Zeng M.-N., Zhou S.-Q., Li M., Cao Y.-G., Xie S.-S., Zheng X.-K., et al. Minor iridoid glycosides from the fruits of Cornus officinalis Sieb. et Zucc. and their anti-diabetic bioactivities. Phytochemistry. 2023;205:113505. doi: 10.1016/j.phytochem.2022.113505. [DOI] [PubMed] [Google Scholar]
  • 98.Peng Z.-C., He J., Pan X.-G., Zhang J., Wang Y.-M., Ye X.-S., Xia C.-Y., Lian W.-W., Yan Y., He X.-L., et al. Secoiridoid dimers and their biogenetic precursors from the fruits of Cornus officinalis with potential therapeutic effects on type 2 diabetes. Bioorg. Chem. 2021;117:105399. doi: 10.1016/j.bioorg.2021.105399. [DOI] [PubMed] [Google Scholar]
  • 99.Ye X.-S., He J., Cheng Y.-C., Zhang L., Qiao H.-Y., Pan X.-G., Zhang J., Liu S.-N., Zhang W.-K., Xu J.-K. Cornusides A−O, bioactive iridoid glucoside dimers from the fruit of Cornus officinalis. J. Nat. Prod. 2017;80:3103–3111. doi: 10.1021/acs.jnatprod.6b01127. [DOI] [PubMed] [Google Scholar]
  • 100.Yang M., Hao Z., Wang X., Zhou S., Xiao C., Zhu D., Yang Y., Wei J., Zheng X., Feng W. Four undescribed iridoid glycosides with antidiabetic activity from fruits of Cornus officinalis Sieb. Et Zucc. Fitoterapia. 2023;165:105393. doi: 10.1016/j.fitote.2022.105393. [DOI] [PubMed] [Google Scholar]
  • 101.Wang F., Chi J., Guo H., Wang J., Wang P., Li Y.-X., Wang Z.-M., Dai L.-P. Revealing the effects and mechanism of wine processing on Corni Fructus using chemical characterization integrated with multi-dimensional analyses. J. Chromatogr. A. 2024;1730:465100. doi: 10.1016/j.chroma.2024.465100. [DOI] [PubMed] [Google Scholar]
  • 102.Gallo F.R., Palazzino G., Federici E., Iurilli R., Delle Monache F., Chifundera K., Galeffi C. Oligomeric secoiridoid glucosides from Jasminum abyssinicum. Phytochemistry. 2006;67:504–510. doi: 10.1016/j.phytochem.2005.11.007. [DOI] [PubMed] [Google Scholar]
  • 103.Dudek M.K., Michalak B., Woźniak M., Czerwińska M.E., Filipek A., Granica S., Kiss A.K. Hydroxycinnamoyl derivatives and secoiridoid glycoside derivatives from Syringa vulgaris flowers and their effects on the pro-inflammatory responses of human neutrophils. Fitoterapia. 2017;121:194–205. doi: 10.1016/j.fitote.2017.07.008. [DOI] [PubMed] [Google Scholar]
  • 104.Chulia A.J., Vercauterent J., Mariotte A.M. Depresteroside, A mixed iridoid-secoiridoid structure from Gentiana depressa. Phytochemistry. 1994;36:377–382. doi: 10.1016/S0031-9422(00)97079-1. [DOI] [Google Scholar]
  • 105.Kırmızıbekmez H., Kúsz N., Bérdi P., Zupkó I., Hohmann J. New iridoids from the roots of Valeriana dioscoridis Sm. Fitoterapia. 2018;130:73–78. doi: 10.1016/j.fitote.2018.08.007. [DOI] [PubMed] [Google Scholar]
  • 106.Duan X.-Y., Ai L.-Q., Qian C.-Z., Zhang M.-D., Mei R.-Q. The polymer iridoid glucosides isolated from Dipsacus asper. Phytochem. Lett. 2019;33:17–21. doi: 10.1016/j.phytol.2019.07.001. [DOI] [Google Scholar]
  • 107.Sun X., Ma G., Zhang D., Huang W., Ding G., Hu H., Tu G., Guo B. New lignans and iridoid glycosides from Dipsacus asper Wall. Molecules. 2015;20:2165–2175. doi: 10.3390/molecules20022165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Li F., Nishidono Y., Tanaka K., Watanabe A., Tezuk Y. A new monoterpenoid glucoindole alkaloid from Dipsacus asper. Nat. Prod. Comm. 2020;15:1934578X20917292. doi: 10.1177/1934578X20917292. [DOI] [Google Scholar]
  • 109.Cao Y.G., Ren Y.-J., Liu Y.-L., Wang M.-N., He C., Chen X., Fan X.-L., Zhang Y.-L., Hao Z.-Y., Li H.-W., et al. Iridoid glycosides and lignans from the fruits of Gardenia jasminoides Eills. Phytochemistry. 2021;190:112893. doi: 10.1016/j.phytochem.2021.112893. [DOI] [PubMed] [Google Scholar]
  • 110.Cambie R.C., Rutledge P.S., Wellington K.D. Chemistry of Fijian plants. 13.1 Floribundal, a nonglycosidic bisiridoid, and six novel fatty esters of δ-amyrin from Scaevola floribunda. J. Nat. Prod. 1997;60:1303–1306. doi: 10.1021/np9702852. [DOI] [Google Scholar]
  • 111.He Z.-D., Ueda S., Inoue K., Akaji M., Fujita T., Yang C.-R. Secoiridoid glucosides from Fraxinus malacophylla. Phytochemistry. 1994;35:177–181. [Google Scholar]
  • 112.Guo J., Liu S., Guo Y., Bai L., Ho C.-T., Bai N. Chemical characterization, multivariate analysis and comparison of biological activities of different parts of Fraxinus mandshurica. Biomed. Chromatogr. 2024;38:e5861. doi: 10.1002/bmc.5861. [DOI] [PubMed] [Google Scholar]
  • 113.Sondheimer E., Blank G.E., Galson E.C., Sheets F.M. Metabolically active glucosides in Oleaceae seeds. Plant Physiol. 1970;45:658–662. doi: 10.1104/pp.45.6.658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114.LaLonde R.T., Wong C., Tsai A.I.-M. Polyglucosidic metabolites of Oleaceae. The chain sequence of oleoside aglucon, tyrosol, and glucose units in three metabolites from Fraxinus americana. J. Amer. Chem. Soc. 1976;98:3007–3013. doi: 10.1021/ja00426a055. [DOI] [Google Scholar]
  • 115.Bai N., He K., Ibarra A., Bily A., Roller M., Chen X., Rühl R. Iridoids from Fraxinus excelsior with adipocyte differentiation-inhibitory and PPARr activation activity. J. Nat. Prod. 2010;73:2–6. doi: 10.1021/np9003118. [DOI] [PubMed] [Google Scholar]
  • 116.Fu G., Ip F.C.F., Pang H., Ip N.Y. New secoiridoid glucosides from Ligustrum lucidum induce ERK and CREB phosphorylation in cultured cortical neurons. Planta Med. 2010;76:998–1003. doi: 10.1055/s-0029-1240869. [DOI] [PubMed] [Google Scholar]
  • 117.Yang N.-N., Xu X.-H., Ren D.-C., Duan J.-A., Xie N., Tian L.-J., Qian S.-H. Secoiridoid constituents from the fruits of Ligustrum lucidum. Helv. Chim. Acta. 2010;93:65–71. doi: 10.1002/hlca.200900144. [DOI] [Google Scholar]
  • 118.Zhang D., Sun L., Mao B., Zhao D., Cui Y., Sun L., Zhang Y., Zhao X., Zhao P., Zhang X. Analysis of chemical variations between raw and wine processed Ligustri Lucidi Fructus by ultra-high-performance liquid chromatography–Q-Exactive Orbitrap/MS combined with multivariate statistical analysis approach. Biomed. Chromatogr. 2021;35:5025. doi: 10.1002/bmc.5025. [DOI] [PubMed] [Google Scholar]
  • 119.Huang X.-J., Wang J., Yin Z.-Q., Ye W.-C. Two new dimeric secoiridoid glycosides from the fruits of Ligustrum lucidum. J. Asian. Nat. Prod. Res. 2010;12:685–690. doi: 10.1080/10286020.2010.490781. [DOI] [PubMed] [Google Scholar]
  • 120.Tang W., Cao J., Zhang X., Zhao Y. Osmanthus fragrans seeds, a source of secoiridoid glucosides and its antioxidizing and novel platelet-aggregation inhibiting function. J. Func. Foods. 2015;14:337–344. doi: 10.1016/j.jff.2015.02.001. [DOI] [Google Scholar]
  • 121.Ngo Q.-M.T., Lee H.-S., Nguyen V.-T., Kim J.A., Woo M.-H., Min B.S. Chemical constituents from the fruits of Ligustrum japonicum and their inhibitory effects on T cell activation. Phytochemistry. 2017;141:147–155. doi: 10.1016/j.phytochem.2017.06.001. [DOI] [PubMed] [Google Scholar]
  • 122.Kim H., Karadeniz F., Kong C.-S., Seo Y. Evaluation of MMP inhibitors isolated from Ligustrum japonicum fructus. Molecules. 2019;24:604. doi: 10.3390/molecules24030604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Guo S., Zhao H., Ma Z., Zhang S., Li M., Zheng Z., Ren X., Ho C.-T., Bai N. Anti-obesity and gut microbiota modulation effect of secoiridoid-enriched extract from Fraxinus mandshurica seeds on high-fat diet-fed mice. Molecules. 2020;25:4001. doi: 10.3390/molecules25174001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Tanahashi T., Takenaka Y., Nagakura N. Two dimeric secoiridoid glucosides from Jasminum polyanthum. Phytochemistry. 1996;41:1341–1345. doi: 10.1016/0031-9422(95)00747-4. [DOI] [Google Scholar]
  • 125.Çaliş I., Kirmizibekmez H., Sticher O. Iridoid glycosides from Globularia trichosantha. J. Nat. Prod. 2001;64:60–64. doi: 10.1021/np0003591. [DOI] [PubMed] [Google Scholar]
  • 126.Tundis R., Peruzzi L., Colica C., Menichini F. Iridoid and bisiridoid glycosides from Globularia meridionalis (Podp.) O. Schwarz aerial and underground parts. Biochem. Syst. Ecol. 2012;40:71–74. doi: 10.1016/j.bse.2011.10.007. [DOI] [Google Scholar]
  • 127.Friščić M., Bucar F., Pilepić K.H. LC-PDA-ESI-MSn analysis of phenolic and iridoid compounds from Globularia spp. J. Mass Spectrom. 2016;51:1211–1236. doi: 10.1002/jms.3844. [DOI] [PubMed] [Google Scholar]
  • 128.Frišcíc M., Petlevski R., Kosalec I., Maduníc J., Matulíc M., Bucar F., Pilepíc K.H., Maleš Ž. Globularia alypum L. and related species: LC-MS profiles and antidiabetic, antioxidant, anti-inflammatory, antibacterial and anticancer potential. Pharmaceuticals. 2022;15:506. doi: 10.3390/ph15050506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Kirmizibekmez H., Çaliş I., Akbay P., Sticher O. Iridoid and bisiridoid glycosides from Globularia cordifolia. Z. Naturforsch. C. 2003;58:337–341. doi: 10.1515/znc-2003-5-608. [DOI] [PubMed] [Google Scholar]
  • 130.Wu Y., Lu J., Lu X.Q.Y., Li R., Guo J., Guo F., Li Y. Monoterpenoids and triterpenoids from Pterocephalus hookeri with NF-kB inhibitory activity. Phytochem. Lett. 2015;13:30–34. doi: 10.1016/j.phytol.2015.05.012. [DOI] [Google Scholar]
  • 131.Sakamoto S., Machida K., Kikuchi M. Ilicifoliosides A and B, bis-secoiridoid glycosides from Osmanthus ilicifolius. Heterocycles. 2007;74:937–941. [Google Scholar]
  • 132.Dinda B., Debnath S., Majumder S., Arima S., Sato N., Harigaya Y. A new bisiridoid glucoside from Mussaenda incana. Chin. Chem. Lett. 2006;10:1331–1334. [Google Scholar]
  • 133.Otsuka H. Iridolinarins A, B, and C: Iridoid esters of an iridoid glucoside from Linaria japonica. J. Nat. Prod. 1994;57:357–362. doi: 10.1021/np50105a004. [DOI] [Google Scholar]
  • 134.Tanahashi T., Takenaka Y., Akimoto M., Okuda A., Kusunoki Y., Suekawa C., Nagakua N. Six secoiridoid glucosides from Jasminum polyanthum. Chem. Pharm. Bull. 1997;45:367–372. doi: 10.1248/cpb.45.367. [DOI] [Google Scholar]
  • 135.Pérez-Bonilla M., Salido S., van Beek T.A., de Waard P., Linares-Palomino P.J., Sánchez A., Altarejos J. Isolation of antioxidative secoiridoids from olive wood (Olea europaea L.) guided by on-line HPLC-DAD-radical scavenging detection. Food Chem. 2011;124:36–41. doi: 10.1016/j.foodchem.2010.05.099. [DOI] [Google Scholar]
  • 136.Salido S., Perez-Bonilla M., Adams R.P., Altarejos J. Phenolic components and antioxidant activity of wood extracts from 10 main Spanish olive cultivars. J. Agric. Food Chem. 2015;63:6493–6500. doi: 10.1021/acs.jafc.5b02979. [DOI] [PubMed] [Google Scholar]
  • 137.Ge W., Li H.-B., Fang H., Yang B., Huang W.-Z., Xiao W., Wang Z.-Z. A new dimeric secoiridoids derivative, japonicaside E, from the flower buds of Lonicera japonica. Nat. Prod. Res. 2019;33:53–58. doi: 10.1080/14786419.2018.1431641. [DOI] [PubMed] [Google Scholar]
  • 138.Li H.-B., Yu Y., Wang Z.-Z., Dai Y., Gao H., Xiao W., Yao X.-S. Iridoid and bis-iridoid glucosides from the fruit of Gardenia jasminoides. Fitoterapia. 2013;88:7–11. doi: 10.1016/j.fitote.2013.03.025. [DOI] [PubMed] [Google Scholar]
  • 139.Guo Z.-Y., Li P., Huang W., Wang J.-J., Liu Y.-J., Liu B., Wang Y.-L., Wu S.-B., Kennelly E.J., Long C.-L. Antioxidant and anti-inflammatory caffeoyl phenylpropanoid and secoiridoid glycosides from Jasminum nervosum stems, a Chinese folk medicine. Phytochemistry. 2014;106:124–133. doi: 10.1016/j.phytochem.2014.07.011. [DOI] [PubMed] [Google Scholar]
  • 140.Tanahashi T., Takenaka Y., Nagakura N., Nishi T. Secoiridoid glucosides esterified with a cyclopentanoid monoterpene unit from Jasminum nudiflorum. Chem. Pharm. Bull. 2000;48:1200–1204. doi: 10.1248/cpb.48.1200. [DOI] [PubMed] [Google Scholar]
  • 141.Takenaka Y., Tanahashi T., Taguchi H., Nagakura N., Nishi T. Nine new secoiridoid glucosides from Jasminum nudiflorum. Chem. Pharm. Bull. 2002;50:384–389. doi: 10.1248/cpb.50.384. [DOI] [PubMed] [Google Scholar]
  • 142.Park K.J., Suh W.S., Subedi L., Kim S.Y., Choi S.U., Lee K.R. Secoiridoid glucosides from the twigs of Syringa oblata var. dilatata and their neuroprotective and cytotoxic activities. Chem. Pharm. Bull. 2017;65:359–364. doi: 10.1248/cpb.c16-00804. [DOI] [PubMed] [Google Scholar]
  • 143.El-Shiekh R.A., Saber F.R., Abdel-Sattar E.A. In vitro anti-hypertensive activity of Jasminum grandiflorum subsp. floribundum (Oleaceae) in relation to its metabolite profile as revealed via UPLC-HRMS analysis. J. Chromatogr. B. 2020;1158:122334. doi: 10.1016/j.jchromb.2020.122334. [DOI] [PubMed] [Google Scholar]
  • 144.Bi X., Li W., Sasaki T., Li Q., Mitsuhata N., Asada Y., Zhang Q., Koike K. Secoiridoid glucosides and related compounds from Syringa reticulata and their antioxidant activities. Bioorg. Med. Chem. Lett. 2011;21:6426–6429. doi: 10.1016/j.bmcl.2011.08.089. [DOI] [PubMed] [Google Scholar]
  • 145.Shen Y.-C., Hsieh P.-W. Four new secoiridoid glucosides from Jasminum urophyllum. J. Nat. Prod. 1997;60:453–457. doi: 10.1021/np960719d. [DOI] [Google Scholar]
  • 146.Tanahashi T., Takenaka Y., Nagakura N., Nishi T. Three secoiridoid glucosides from Jasminum nudiflorum. J. Nat. Prod. 1999;62:1311–1315. doi: 10.1021/np9901175. [DOI] [PubMed] [Google Scholar]
  • 147.Shen Y.-C., Hsieh P.-W. Secoiridoid glucosides from Jasminum urophyllum. Phytochemistry. 1997;46:1197–1201. doi: 10.1016/S0031-9422(97)80011-8. [DOI] [Google Scholar]
  • 148.Handjieva N., Tersieva L., Popov S., Evstatieva L. Two iridoid glucosides, 5-O-menthiafoloylkickxioside and kickxin, from Kickxia dum. species. Phytochemistry. 1995;39:925–927. doi: 10.1016/0031-9422(95)00019-4. [DOI] [Google Scholar]
  • 149.Kita M., Kigoshi H., Uemura D. Isolation and Structure of Korolkoside, a bis-iridoid glucoside from Lonicera korolkovii. J. Nat. Prod. 2001;64:1090–1092. doi: 10.1021/np010093d. [DOI] [PubMed] [Google Scholar]
  • 150.Yu J.-Q., Wang Z.-P., Zhu H., Li G., Wang X. Chemical constituents of Lonicera japonica roots and their anti-inflammatory effects. Acta Pharm. Sin. 2016;51:1110–1116. [PubMed] [Google Scholar]
  • 151.Sarıkahya N.B., Pekmez M., Arda N., Kayce P., Karabay Yavasoğlu N.Ü., Kırmızıgül S. Isolation and characterization of biologically active glycosides from endemic Cephalaria species in Anatolia. Phytochem. Lett. 2011;4:415–420. doi: 10.1016/j.phytol.2011.05.006. [DOI] [Google Scholar]
  • 152.Sarikahya N.B., Kirmizigül S. Novel biologically active glycosides from the aerial parts of Cephalaria gazipashensis. Turk. J. Chem. 2012;36:323–334. doi: 10.3906/kim-1105-32. [DOI] [Google Scholar]
  • 153.Tomassini L., Foddai S., Nicoletti M. Iridoids from Dipsacus ferox (Dipsacaceae) Biochem. Syst. Ecol. 2004;32:1083–1085. doi: 10.1016/j.bse.2004.03.010. [DOI] [Google Scholar]
  • 154.Khaled N., Ibrahim N., Ali A.E., Youssef F.S., El-Ahmady S.H. LC-qTOF-MS/MS phytochemical profiling of Tabebuia impetiginosa (Mart. Ex DC.) Standl. leaf and assessment of its neuroprotective potential in rats. J. Ethnopharmacol. 2024;331:118292. doi: 10.1016/j.jep.2024.118292. [DOI] [PubMed] [Google Scholar]
  • 155.Podanyi B., Reid R.S., Kocsis A., Szabó L. Laciniatoside V: A new bis-iridoid glucoside. isolation and structure elucidation by 2D NMR spectroscopy. J. Nat. Prod. 1989;52:135–142. doi: 10.1021/np50061a017. [DOI] [Google Scholar]
  • 156.Sarikahya N.B., Goren A.C., Kirmizigul S. Simultaneous determination of several flavonoids and phenolic compounds in nineteen different Cephalaria species by HPLC-MS/MS. J. Pharma. Biomed. Anal. 2019;173:120–125. doi: 10.1016/j.jpba.2019.05.019. [DOI] [PubMed] [Google Scholar]
  • 157.Al-Hamoud G.A., Orfali R.S., Takeda Y., Sugimoto S., Yamano Y., Al Musayeib N.M., Fantoukh O.I., Amina M., Otsuka H., Matsunami K. Lasianosides F–I: A new iridoid and three new bis-iridoid glycosides from the leaves of Lasianthus verticillatus (Lour.) Merr. Molecules. 2020;25:2798. doi: 10.3390/molecules25122798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 158.Zhang Y., Xiong H., Bi J., Zhao G., Yang Y., Chen X., Li Y., Zhang C., Zhang G. An HPLC method for simultaneous quantitative determination of seven secoiridoid glucosides separated from the roots of Ilex pubescens. Biomed. Chromatogr. 2017;31:e3995. doi: 10.1002/bmc.3995. [DOI] [PubMed] [Google Scholar]
  • 159.Mitsunaga K., Koike K., Fukuda H., Ishii K., Ohmoto T. Ligustrinoside, a new bisiridoid glucoside from Strychnos ligustrina. Chem. Pharm. Bull. 1991;39:2737–2738. doi: 10.1248/cpb.39.2737. [DOI] [Google Scholar]
  • 160.Hamburger M., Hostettmann M., Stoeckli-evans H., Solis P., Gupta M., Hostettmann K. A novel type of dimeric secoiridoid glucoside from Lisianthus jefensis. Planta Med. 1989;55:631. doi: 10.1055/s-2006-962198. [DOI] [Google Scholar]
  • 161.Müller A.A., Weigend M. Loasafolioside, a minor iridoid dimer from the leaves of Loasa acerifolia. Phytochemistry. 1999;50:615–618. doi: 10.1016/S0031-9422(98)00560-3. [DOI] [Google Scholar]
  • 162.Jia Z.-J., Liu Z.-M. Phenylpropanoid and iridoid glycosides from Pedicularis longiflora. Phytochemistry. 1992;31:3125–3127. doi: 10.1016/0031-9422(91)83050-u. [DOI] [PubMed] [Google Scholar]
  • 163.de Moura V.M., Ribeiro M.A.S., Corrêa J.G.S., Peixoto M.A., Souza G.K., Morais D., Bonfim-Mendonça P.S., Svidzinski T.I.E., Pomini A.M., Meurerd E.C., et al. Minutifloroside, a new bis-iridoid glucoside with antifungal and antioxidant activities and other constituents from Pacourea minutiflora. J. Braz. Chem. Soc. 2020;31:505–511. [Google Scholar]
  • 164.Zhang Y.-J., Liu Y.-Q., Pu X.-Y., Yang C.-R. Iridoidal glycosides from Jasminum sambac. Phytochemistry. 1995;38:899–903. doi: 10.1016/0031-9422(94)E0200-C. [DOI] [Google Scholar]
  • 165.Somanadhan B., Wagner Smitt U., George V., Pushpangadan P., Rajasekharan S., Duus J.O., Nyman U., Olsen C.E., Jaroszewski J.W. Angiotensin converting enzyme (ACE) inhibitors from Jasminum azoricum and Jasminum grandiflorum. Planta Med. 1998;64:246–250. doi: 10.1055/s-2006-957419. [DOI] [PubMed] [Google Scholar]
  • 166.Shen Y.-C., Chen C.-F., Gao J., Zhao C., Chen C.-Y. Secoiridoids glycosides from some selected Jasminum spp. J. Chin. Chem. Soc. 2000;47:367–372. doi: 10.1002/jccs.200000049. [DOI] [Google Scholar]
  • 167.Yang M., Hao Z., Wang X., Zhou S., Zhu D., Yang Y., Wei J., Li M., Zheng X., Feng W. Neocornuside A–D, four novel iridoid glycosides from fruits of Cornus officinalis and their antidiabetic activity. Molecules. 2022;27:4732. doi: 10.3390/molecules27154732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 168.Tanahashi T., Takenaka Y., Nagakura N. Three secoiridoid glucosides esterified with a linear monoterpene unit and a dimeric secoiridoid glucoside from Jasminum polyanthum. J. Nat. Prod. 1997;60:514–518. doi: 10.1021/np9700376. [DOI] [Google Scholar]
  • 169.Li Y.-C., Yang J., Li J.-K., Liang X.-H., Sun J.-L. Two new secoiridoid glucosides from the twigs of Cornus officinalis. Chem. Nat. Compd. 2016;52:647–650. doi: 10.1007/s10600-016-1730-4. [DOI] [Google Scholar]
  • 170.Filipek A., Wyszomierska J., Michalak B., Kiss A.K. Syringa vulgaris bark as a source of compounds affecting the release of inflammatory mediators from human neutrophils and monocytes/macrophages. Phytochem. Lett. 2019;30:309–313. doi: 10.1016/j.phytol.2019.02.008. [DOI] [Google Scholar]
  • 171.Fukuyama Y., Koshino K., Hasegawa T., Yamada T., Nakagawa L. New secoiridoid glucosides from Ligustrum japonicum. Planta Med. 1987;53:427–431. doi: 10.1055/s-2006-962764. [DOI] [PubMed] [Google Scholar]
  • 172.Sung S.H., Kim E.S., Lee K.Y., Lee M.K., Kim Y.C. A new neuroprotective compound of Ligustrum japonicum leaves. Planta Med. 2006;72:62–64. doi: 10.1055/s-2005-873140. [DOI] [PubMed] [Google Scholar]
  • 173.Kikuchi M., Yamauchi Y., Takahashi Y., Sugiyama M. Studies on the constituents of Ligustrum species. XIV. Structures of secoiridoid glycosides from the leaves of Ligustrum obtusifolium Sieb. et Zucc. J. Pharm. Soc. Jpn. 1989;109:460–463. doi: 10.1248/yakushi1947.109.7_460. [DOI] [Google Scholar]
  • 174.Yang G.-M. HPLC fingerprints of crude and processed Ligustri Lucidi Fructus. Chin. Trad. Herb. Drugs. 2016;24:760–766. [Google Scholar]
  • 175.Jiao M., Shi X., Han Y., Xu R., Zhao S., Jia P., Zheng X., Li X., Xiao C. The screened compounds from Ligustri Lucidi Fructus using the immobilized calcium sensing receptor column exhibit osteogenic activity in vitro. J. Pharma. Biomed. Anal. 2024;245:116192. doi: 10.1016/j.jpba.2024.116192. [DOI] [PubMed] [Google Scholar]
  • 176.Wozniak M., Michalak B., Wyszomierska J., Dudek M.K., Kiss A.K. Effects of Phytochemically characterized extracts from Syringa vulgaris and isolated secoiridoids on mediators of inflammation in a human neutrophil model. Front. Pharmacol. 2018;9:349. doi: 10.3389/fphar.2018.00349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 177.Otsuka H. Two new iridoid glucosides from Paederia scandens (Lour.) Merr. var. mairei (Leveille) Hara. Nat. Med. 2002;56:59–62. [Google Scholar]
  • 178.Lu C.-C., Wang J.-H., Fang D.-M., Wu Z.-J., Zhang G.-L. Analyses of the iridoid glucoside dimers in Paederia scandens using HPLC-ESI-MS/MS. Phytochem. Anal. 2013;24:407–412. doi: 10.1002/pca.2424. [DOI] [PubMed] [Google Scholar]
  • 179.Zou X., Peng S., Liu X., Bai B., Ding L. Sulfur-containing iridoid glucosides from Paederia scandens. Fitoterapia. 2006;77:374–377. doi: 10.1016/j.fitote.2006.05.003. [DOI] [PubMed] [Google Scholar]
  • 180.Zhou Y., Zou X., Liu X., Peng S.-L., Ding L.-S. Multistage electrospray ionization mass spectrometric analyses of sulfur-containing iridoid glucosides in Paederia scandens. Rapid Commun. Mass Spectrom. 2007;21:1375–1385. doi: 10.1002/rcm.2965. [DOI] [PubMed] [Google Scholar]
  • 181.Liu Z.-H., Hou B., Yang L., Ma R.-J., Li J.-Y., Hu J.-M., Zhou J. Iridoids and bis-iridoids from Patrinia scabiosaefolia. RSC Adv. 2017;7:24940–24949. doi: 10.1039/C7RA03345A. [DOI] [PubMed] [Google Scholar]
  • 182.Liu Z., Niu Y., Zhou L., Meng L., Chen S., Wang M., Hu J., Kang W. Nine unique iridoids and iridoid glycosides from Patrinia scabiosaefolia. Front. Chem. 2021;9:657028. doi: 10.3389/fchem.2021.657028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 183.Kaweetripob W., Thongnest S., Boonsombat J., Batsomboon P., Salae A.W., Prawat H., Mahidol C., Ruchirawat S. Phukettosides A–E, mono- and bis-iridoid glycosides, from the leaves of Morinda umbellata L. Phytochemistry. 2023;216:113890. doi: 10.1016/j.phytochem.2023.113890. [DOI] [PubMed] [Google Scholar]
  • 184.Damtoft S., Franzyk H., Jensen S.R. Iridoid glucosides from Picconia excelsa. Phytochemistry. 1997;45:743–750. doi: 10.1016/S0031-9422(97)00023-X. [DOI] [Google Scholar]
  • 185.Lien D.T.M., Phung N.K.P., Diem T.A., Nhung N.T., Nhan L.C., Du N.X., Dung N.T.M. Identification of compounds from ethylacetate of Leonotis nepetifolia (L.) R.Br. (Lamiaceae) J. Sci. Technol. Food. 2020;20:62–71. [Google Scholar]
  • 186.Morikawa T., Nakanishi Y., Inoue N., Manse Y., Matsuura H., Hamasaki S., Yoshikawa M., Muraoka O., Ninomiya K. Acylated iridoid glycosides with hyaluronidase inhibitory activity from the rhizomes of Picrorhiza kurroa Royle ex Benth. Phytochemistry. 2020;169:112185. doi: 10.1016/j.phytochem.2019.112185. [DOI] [PubMed] [Google Scholar]
  • 187.El-Hawary S.S., El-Hefnawy H.M., Osman S.M., Mostafa E.S., Mokhtar F.A., El-Raey M.A. Chemical profile of two Jasminum sambac L.(Ait) cultivars cultivated in Egypt-their mediated silver nanoparticles synthesis and selective cytotoxicity. Int. J. Appl. Pharm. 2019;11:154–164. doi: 10.22159/ijap.2019v11i6.33646. [DOI] [Google Scholar]
  • 188.El-Hawary S.S., El-Hefnawy H.M., Osman S.M., El-Raey M.A., Mokhtar F.A., Ibrahim H.A. Antioxidant, anti-inflammatory and cytotoxic activities of Jasminum multiflorum (Burm. F.) Andrews leaves towards MCF-7 breast cancer and HCT 116 colorectal cell lines and identification of bioactive metabolites. Anti-Cancer Ag. Med. Chem. 2021;21:2572–2582. doi: 10.2174/1871520621666210901103440. [DOI] [PubMed] [Google Scholar]
  • 189.Sudo H., Takushi A., Hirata E., Ide T., Otsuka H., Takeda Y. Premnaodorosides D-G: Acyclic monoterpenediols iridoid glucoside diesters from leaves of Premna subscandens. Phytochemistry. 1999;52:1495–1499. doi: 10.1016/S0031-9422(99)00218-6. [DOI] [Google Scholar]
  • 190.Elmaidomy A.H., Alhadrami H.A., Amin E., Aly H.F., Othman A.M., Rateb M.E., Hetta M.H., Abdelmohsen U.R., Hassan H.M. Anti-inflammatory and antioxidant activities of terpene- and polyphenol-rich Premna odorata leaves on alcohol-inflamed female Wistar albino rat liver. Molecules. 2020;25:3116. doi: 10.3390/molecules25143116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 191.Wu Y.-C., Ying Y.-J., Guo F.-J., Zhu G.-F. Bis-iridoid and lignans from traditional Tibetan herb Pterocephalus hookeri. Biochem. Syst. Ecol. 2014;56:209–212. doi: 10.1016/j.bse.2014.05.013. [DOI] [Google Scholar]
  • 192.Wu Y.-C., Guo C.-X., Zhu Y.-Z., Li Y.-M., Guo F.-J., Zhu G.-F. Four new bis-iridoids isolated from the traditional Tibetan herb Pterocephalus hookeri. Fitoterapia. 2014;98:104–109. doi: 10.1016/j.fitote.2014.07.015. [DOI] [PubMed] [Google Scholar]
  • 193.Xu D.-F., Miao L., Zhang J.-S., Zhang H. Bis-iridoids from Pterocephalus hookeri and evaluation of their anti-inflammatory activity. Chem. Biodiversity. 2022;19:e202100952. doi: 10.1002/cbdv.202100952. [DOI] [PubMed] [Google Scholar]
  • 194.Mahran E., Hosny M., El-Hela A., Boroujerdi A. New iridoid glycosides from Anarrhinum pubescens. Nat. Prod. Res. 2019;33:3057–3064. doi: 10.1080/14786419.2018.1516659. [DOI] [PubMed] [Google Scholar]
  • 195.Zhang Y., Deng B., Cui Y., Chen X., Bi J., Zhang G. Two new secoiridoid glucosides and a new lignan from the roots of Ilex pubescens. J. Nat. Med. 2018;72:946–953. doi: 10.1007/s11418-018-1227-5. [DOI] [PubMed] [Google Scholar]
  • 196.Bianco A., Passacantilli P., Rispoli C., Nicoletti M., Messana I., Garbarino J.A., Gambaro V. Radiatoside, a new bisiridoid from Argylza radiata. J. Nat. Prod. 1986;49:519–521. doi: 10.1021/np50045a026. [DOI] [Google Scholar]
  • 197.Bianco A., Passacantilli P., Righi G., Nicoletti M., Serafini M., Garbarino J.A., Gambaro V., Chamy M.C. Radiatoside B and C, two new bisiridoid glucosides from Argylia radiata. Planta Med. 1987;53:385–386. doi: 10.1055/s-2006-962746. [DOI] [PubMed] [Google Scholar]
  • 198.Bianco A., Passacantilli P., Garbarino J.A., Gambaro V., Serafini M., Nicoletti M., Rispoli C., Righi G. A new non-glycosidic iridoid and a new bisiridoid from Argylia radiata. Planta Med. 1991;57:286–287. doi: 10.1055/s-2006-960093. [DOI] [PubMed] [Google Scholar]
  • 199.Hamerski L., Furlan M., Silva D.H.S., Cavalheiro A.J., Nogueira Eberlin M., Tomazel D.M., da Silva Bolzani V. Iridoid glucosides from Randia spinosa (Rubiaceae) Phytochemistry. 2003;63:397–400. doi: 10.1016/S0031-9422(03)00109-2. [DOI] [PubMed] [Google Scholar]
  • 200.Xiao W., Li S., Niu X., Zhao Y., Sun H. Rapulasides A and B: Two novel intermolecular rearranged biiridoid glucosides from the roots of Heracleum rapula. Tetrahedr. Lett. 2005;46:5743–5746. doi: 10.1016/j.tetlet.2005.06.094. [DOI] [Google Scholar]
  • 201.Chang F.-P., Huang S.-S., Lee T.-H., Chang C.-I., Kuo T.-F., Huang G.-J., Kuo Y.-H. Four new iridoid metabolites have been isolated from the stems of Neonauclea reticulata (Havil.) Merr. with anti-inflammatory activities on LPS-induced RAW264.7 cells. Molecules. 2019;24:4271. doi: 10.3390/molecules24234271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 202.Zhou Z., Yin W., Zhang H., Feng Z., Xia J. A new iridoid glycoside and potential MRB inhibitory activity of isolated compounds from the rhizomes of Cyperus rotundus L. Nat. Prod. Res. 2013;27:1732–1736. doi: 10.1080/14786419.2012.750318. [DOI] [PubMed] [Google Scholar]
  • 203.Zhou Z., Zhang H. Phenolic and iridoid glycosides from the rhizomes of Cyperus rotundus L. Med. Chem. Res. 2013;22:4830–4835. doi: 10.1007/s00044-013-0504-9. [DOI] [Google Scholar]
  • 204.Takenaka Y., Okazaki N., Tanahashi T., Nagakura N., Nishi T. Secoiridoid and iridoid glucosides from Syringa afghanica. Phytochemistry. 2002;59:779–787. doi: 10.1016/S0031-9422(02)00024-9. [DOI] [PubMed] [Google Scholar]
  • 205.Wu S.-J., Chan Y.-Y. Five new iridoids from roots of Salvia digitaloides. Molecules. 2014;19:15521–15534. doi: 10.3390/molecules191015521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 206.Ling S.-K., Komorita A., Tanaka T., Fujioka T., Mihashi K., Kouno I. Sulfur-containing bis-iridoid glucosides and iridoid glucosides from Saprosma scortechinii. J. Nat. Prod. 2002;65:656–660. doi: 10.1021/np010479o. [DOI] [PubMed] [Google Scholar]
  • 207.Ling S.-K., Komorita A., Tanaka T., Fujioka T., Mihashi K., Kouno I. Iridoids and anthraquinones from the Malaysian medicinal plant, Saprosma scortechinii (Rubiaceae) Chem. Pharm. Bull. 2002;50:1035–1040. doi: 10.1248/cpb.50.1035. [DOI] [PubMed] [Google Scholar]
  • 208.Scott Brown A.S., Veitch N.C., Simmonds M.S.J. Leaf chemistry and foliage avoidance by the thrips Frankliniella occidentalis and Heliothrips haemorrhoidalis in Glasshouse Collections. J. Chem. Ecol. 2011;37:301–310. doi: 10.1007/s10886-011-9918-3. [DOI] [PubMed] [Google Scholar]
  • 209.Rodriguez S., Wolfender J.-L., Hostettmann K., Stoeckli-Evans H., Gupt M.P. Monoterpene dimers from Lisianthius seemannii. Helv. Chim. Acta. 1998;81:1393–1403. doi: 10.1002/hlca.19980810548. [DOI] [Google Scholar]
  • 210.Bendamene S., Boutaghane N., Sayagh C., Magid A.A., Kabouche Z., Bensouici C., Voutquenne-Nazabadioko L. Bis-iridoids and other constituents from Scabiosa semipapposa. Phytochem. Lett. 2022;49:202–210. doi: 10.1016/j.phytol.2022.04.005. [DOI] [Google Scholar]
  • 211.Çaliş Í., Ersoz T., Chulla A.J., Rüedi P. Septemfidoside: A new bis-iridoid diglucoside from Gentiana septemfida. J. Nat. Prod. 1992;55:385–388. doi: 10.1021/np50081a018. [DOI] [Google Scholar]
  • 212.Olennikov D.N., Gadimli A.I., Isaev J.I., Kashchenko N.I., Prokopyev A.S., Kataeva T.N., Chirikova N.K., Vennos C. Caucasian Gentiana species: Untargeted LC-MS metabolic profiling, antioxidant and digestive enzyme inhibiting activity of six plants. Metabolites. 2019;9:271. doi: 10.3390/metabo9110271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 213.Takeda Y., Masuda T., Honda G., Takaishi Y., Ito M., Ashurmetov O.A., Khodzhimatov O.K., Otsuka H. Secoiridoid glycosides from Gentiana olivieri. Chem. Pharm. Bull. 1999;47:1338–1340. doi: 10.1248/cpb.47.1338. [DOI] [Google Scholar]
  • 214.Balijagić J., Janković T., Zdunić G., Bošković J., Šavikin K., Gođevac D., Stanojković T., Jovančević M., Menković N. Chemical profile, radical scavenging and cytotoxic activity of yellow gentian leaves (Genitaneae luteae folium) grown in northern regions of Montenegro. Nat. Prod. Comm. 2012;7:1487–1490. doi: 10.1177/1934578X1200701119. [DOI] [PubMed] [Google Scholar]
  • 215.Geng C.-A., Jiang Z.-Y., Ma Y.-B., Luo J., Zhang Z.-M., Wang H.-L., Shen Y., Zuo A.-X., Zhou J., Chen J.-J. Swerilactones A and B, anti-HBV new lactones from a traditional Chinese Herb: Swertia mileensis as a treatment for viral hepatitis. Org. Lett. 2009;11:4120–4123. doi: 10.1021/ol901592f. [DOI] [PubMed] [Google Scholar]
  • 216.Geng C.-A., Zhang X.-M., Ma Y.-B., Jiang Z.-Y., Liu J.-F., Zhou J., Chen J.-J. Three new secoiridoid glycoside dimers from Swertia mileensis. J. Asian Nat. Prod. Res. 2010;12:542–548. doi: 10.1080/10286020.2010.491477. [DOI] [PubMed] [Google Scholar]
  • 217.He K., Ma Y.-B., Cao T.-W., Wang H.-L., Jiang G.-Q., Geng C.-A., Zhang X.-M., Chen J.-J. Seven new secoiridoids with anti-hepatitis b virus activity from Swertia angustifolia. Planta Med. 2012;78:814–820. doi: 10.1055/s-0031-1298381. [DOI] [PubMed] [Google Scholar]
  • 218.Capasso A., Urrunaga R., Garofalo L., Sorrentino L., Aquino R. Phytochemical and pharmacological studies on medicinal herb Acicarpha tribuloides. Int. J. Pharmacog. 1996;34:255–261. doi: 10.1076/phbi.34.4.255.13230. [DOI] [Google Scholar]
  • 219.Yang Z.-G., Ding K., Xu G., Shen Y., Meng Z.-G., Yang S.-C. Chemical constituents of Dipsacus asper. J. Chin. Med. Mat. 2012;35:1789–1792. [PubMed] [Google Scholar]
  • 220.Saar-Reisma P., Koel M., Tarto R., Vaher M. Extraction of bioactive compounds from Dipsacus fullonum leaves using deep eutectic solvents. J. Chromatogr. A. 2022;1677:463330. doi: 10.1016/j.chroma.2022.463330. [DOI] [PubMed] [Google Scholar]
  • 221.Saar-Reisma P., Bragin O., Kuhtinskaja M., Reile I., Laanet P.R., Kulp M., Vaher M. Extraction and fractionation of bioactives from Dipsacus fullonum L. leaves and evaluation of their anti-Borrelia activity. Pharmaceuticals. 2022;15:87. doi: 10.3390/ph15010087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 222.Gao Y., Li W.-J., Li C.-Y., Fang G., Zhang Y. UFLC-PDA fingerprint of Tibetan medicine Pterocephalus hookeri. China J. Chin. Mat. Med. 2014;39:1185–1189. [PubMed] [Google Scholar]
  • 223.Abu-Reidah I.M., Arráez-Román D., Al-Nuri M., Warad I., Segura-Carretero A. Untargeted metabolite profiling and phytochemical analysis of Micromeria fruticosa L. (Lamiaceae) leaves. Food Chem. 2019;279:128–143. doi: 10.1016/j.foodchem.2018.11.144. [DOI] [PubMed] [Google Scholar]
  • 224.Nicoletti M., Di Fabio T.A., Serafini M., Garbarino J.A., Piovano M., Chamy M.C. Iridoids from Loasa tricolor. Biochem. Sys. Ecol. 1991;19:167–170. doi: 10.1016/0305-1978(91)90041-W. [DOI] [Google Scholar]
  • 225.Müller A.A., Weigend M. Iridoids from Loasa acerifolia. Phytochemistry. 1998;49:131–135. doi: 10.1016/S0031-9422(97)01000-5. [DOI] [PubMed] [Google Scholar]
  • 226.Ma W.-G., Wang D.-Z., Zeng Y.-L., Yang C.-R. Iridoidal glycosides from Triplostegia grandiflora. Plant Divers. 1992;14:1223–1225. [Google Scholar]
  • 227.Sun X.-G., Sun X.-G., Huang W.-H., Huang W.-H., Guo B.-L., Guo B.-L. Chemical constituents of Dipsaci Radix. Drugs Clin. 2014;29:459–464. [Google Scholar]
  • 228.Hong Z.-H. Analysis of components of crude and sweated Dipsaci Radix by UPLC-Triple-TOF/MS. Chin. Trad. Herb. Drugs. 2020;24:1233–1241. [Google Scholar]
  • 229.Li W., Gao Y., Chen Y., Wang Y., Zhang Y. Simultaneous determination of five active chemical components in Tibetan medicine Pterocephalus hookeri Hoeck by UFLC-PDA. World Sci. Technol. Mod. Trad. Chin. Med. 2014;12:161–166. [Google Scholar]
  • 230.Zhu K.-C., Ma C.-H., Ye G., Fan M.-S., Huang C.-G. Two new secoiridoid glycosides from Tripterospermum chinense. Helv. Chim. Acta. 2007;90:291–296. doi: 10.1002/hlca.200790033. [DOI] [Google Scholar]
  • 231.Zhang T., Li J., Li B., Chen L., Yin H.-L., Liu S.-J., Tian Y., Dong J.-X. Two novel secoiridoid glucosides from Tripterospermum chinense. J. Asian Nat. Prod. Res. 2012;14:1097–1102. doi: 10.1080/10286020.2012.723201. [DOI] [PubMed] [Google Scholar]
  • 232.Hase T., Takao H., Iwagawa T. The bitter iridoids from Viburnum urceolatum. Phytochemistry. 1983;22:1977–1982. doi: 10.1016/0031-9422(83)80027-2. [DOI] [Google Scholar]
  • 233.Quan L.-Q., Hegazy A.-M., Zhang Z.-J., Zhao X.-D., Li H.-M., Li R.-T. Iridoids and bis-iridoids from Valeriana jatamansi and their cytotoxicity against human glioma stem cells. Phytochemistry. 2020;175:112372. doi: 10.1016/j.phytochem.2020.112372. [DOI] [PubMed] [Google Scholar]
  • 234.Arnold U.W., Zidorn C., Ellmerer E.P., Stuppner H. Iridoid and phenolic glycosides from Wulfenia carinthiaca. Z. Naturforsch. C. 2002;57:969–975. doi: 10.1515/znc-2002-11-1202. [DOI] [PubMed] [Google Scholar]
  • 235.Takeda Y., Shimidzu H., Mizuno K., Inouchi S., Masuda T., Hirata E., Shinzato T., Aramoto M., Otsuka H. An iridoid glucoside dimer and a non-glycosidic iridoid from the leaves of Lasianthus wallichii. Chem. Pharm. Bull. 2002;50:1395–1397. doi: 10.1248/cpb.50.1395. [DOI] [PubMed] [Google Scholar]
  • 236.Mansour A.B., Porter E.A., Kite G.C., Simmonds M.J., Abdelhedi R., Bouaziz M. Phenolic profile characterization of chemlali olive stones by liquid chromatography-ion trap mass spectrometry. J. Agric. Food Chem. 2015;63:1990–1995. doi: 10.1021/acs.jafc.5b00353. [DOI] [PubMed] [Google Scholar]
  • 237.Quang D.N., Hashimoto T., Tanaka M., Dung N.X., Asakawa Y. Iridoid glucosides from roots of Vietnamese Paederia scandens. Phytochemistry. 2002;60:505–514. doi: 10.1016/S0031-9422(02)00096-1. [DOI] [PubMed] [Google Scholar]
  • 238.Attia A.A., Abd El-Mawla A.M.A. A new secoiridoid glucoside from Jasminum azoricum L. Bull. Pharm. Sci. Assiut Univ. 2003;26:1–3. doi: 10.21608/bfsa.2003.65462. [DOI] [Google Scholar]
  • 239.Venditti A. What is and what should never be: Artifacts, improbable phytochemicals, contaminants and natural products. Nat. Prod. Res. 2020;34:1014–1031. doi: 10.1080/14786419.2018.1543674. [DOI] [PubMed] [Google Scholar]
  • 240.Verma N., Shukla S. Impact of various factors responsible for fluctuation in plant secondary metabolites. J. Appl. Res. Med. Arom. Plants. 2015;2:105–113. doi: 10.1016/j.jarmap.2015.09.002. [DOI] [Google Scholar]
  • 241.Ashraf M.A., Iqbal M., Rasheed R., Hussain I., Riaz M., Arif M.S. Plant Metabolites and Regulation Under Environmental Stress. Academic Press; Cambridge, MA, USA: 2018. Environmental stress and secondary metabolites in plants: An overview; pp. 153–167. [Google Scholar]
  • 242.Dinda B. Pharmacology and Applications of Naturally Occurring Iridoids. Springer; Berlin, Germany: 2019. [Google Scholar]
  • 243.Frezza C., Venditti A., Serafini M., Bianco A. Phytochemistry, chemotaxonomy, ethnopharmacology, and nutraceutics of Lamiaceae. Stud. Nat. Prod. Chem. 2019;62:125–178. [Google Scholar]
  • 244.Martins D., Nunez C.V. Secondary mtabolites from Rubiaceae species. Molecules. 2015;20:13422–13495. doi: 10.3390/molecules200713422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 245.Jensen S.R. Systematic implications of the distribution of iridoids and other chemical compounds in the Loganiaceae and other families of the Asteridae. Ann. Missouri Bot. Gar. 1992;79:284–302. doi: 10.2307/2399770. [DOI] [Google Scholar]

Articles from Molecules are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES