Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1984 Jan;138(Pt 1):1–14.

Myelinated nerve fibres and the fate of lanthanum tracer: an in vivo study.

M L Mackenzie, Z Shorer, M N Ghabriel, G Allt
PMCID: PMC1164305  PMID: 6368509

Abstract

The permeability of the marginal tight junctional system of myelin was tested in the rat employing the electron-dense tracer lanthanum nitrate. Lanthanum was either included in the fixative used for vascular perfusion (at a concentration of 20 mM) or was microinjected in vivo into the sural or tibial nerve (5, 10 and 20 mM). After 5-60 minutes, the microinjected nerves were fixed either by immersion or vascular perfusion. Lanthanum tracer was present in the intraperiod line gap of myelin, irrespective of the mode of application of the tracer, the method of fixation or the time of exposure to lanthanum. However, the tracer was present more extensively when included in the fixative compared with in vivo microinjection. Internodally, lanthanum was usually restricted to the inner, or more commonly, the outer lamellae of larger fibres, while all lamellae were usually penetrated by tracer in smaller fibres. Paranodally, compact myelin was more extensively penetrated. The periaxonal space (between axon and Schwann cell) was readily accessible to tracer. It is concluded that the marginal tight junctional system of myelin is apparently of the 'leaky' type and is permeable to ions. The findings have implications for the electrophysiology and pathophysiology of the myelinated nerve fibre.

Full text

PDF
1

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahams P. H., Day A., Allt G. Schwann cell plasma membrane changes induced by nerve crush. A freeze-fracture study. Acta Neuropathol. 1980;50(2):85–90. doi: 10.1007/BF00692856. [DOI] [PubMed] [Google Scholar]
  2. Barrett E. F., Barrett J. N. Intracellular recording from vertebrate myelinated axons: mechanism of the depolarizing afterpotential. J Physiol. 1982 Feb;323:117–144. doi: 10.1113/jphysiol.1982.sp014064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blaurock A. E. The spaces between membrane bilayers within PNS myelin as characterized by X-ray diffraction. Brain Res. 1981 Apr 6;210(1-2):383–387. doi: 10.1016/0006-8993(81)90914-8. [DOI] [PubMed] [Google Scholar]
  4. Claude P., Goodenough D. A. Fracture faces of zonulae occludentes from "tight" and "leaky" epithelia. J Cell Biol. 1973 Aug;58(2):390–400. doi: 10.1083/jcb.58.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dermietzel R. Junctions in the central nervous system of the cat. I. Membrane fusion in central myelin. Cell Tissue Res. 1974 May 8;148(4):565–576. doi: 10.1007/BF00221940. [DOI] [PubMed] [Google Scholar]
  6. Dermietzel R., Kroczek H. Interlamellar tight junctions of central myelin. I. Developmental mechanisms during myelogenesis. Cell Tissue Res. 1980;213(1):81–94. doi: 10.1007/BF00236922. [DOI] [PubMed] [Google Scholar]
  7. Dermietzel R., Leibstein A. G., Schünke D. Interlamellar tight junctions of central myelin. II. A freeze fracture and cytochemical study on their arrangement and composition. Cell Tissue Res. 1980;213(1):95–108. doi: 10.1007/BF00236923. [DOI] [PubMed] [Google Scholar]
  8. Erlij D., Martínez-Palomo A. Opening of tight junctions in frog skin by hypertonic urea solutions. J Membr Biol. 1972;9(3):229–240. [PubMed] [Google Scholar]
  9. Feder N. Microperoxidase. An ultrastructural tracer of low molecular weight. J Cell Biol. 1971 Oct;51(1):339–343. doi: 10.1083/jcb.51.1.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ghabriel M. N., Allt G. A technique for microinjection of peripheral nerve. J Neurol Sci. 1982 May;54(2):317–323. doi: 10.1016/0022-510x(82)90192-7. [DOI] [PubMed] [Google Scholar]
  11. Ghabriel M. N., Allt G. Regeneration of the node of Ranvier: a light and electron microscope study. Acta Neuropathol. 1977 Feb 28;37(2):153–163. doi: 10.1007/BF00692061. [DOI] [PubMed] [Google Scholar]
  12. Hall S. M., Williams P. L. The distribution of electron-dense tracers in peripheral nerve fibres. J Cell Sci. 1971 Mar;8(2):541–555. doi: 10.1242/jcs.8.2.541. [DOI] [PubMed] [Google Scholar]
  13. Hirano A., Becker N. H., Zimmerman H. M. Isolation of the periaxonal space of the central myelinated nerve fiber with regard to the diffusion of peroxidase. J Histochem Cytochem. 1969 Aug;17(8):512–516. doi: 10.1177/17.8.512. [DOI] [PubMed] [Google Scholar]
  14. Hirano A., Dembitzer H. M. The transverse bands as a means of access to the periaxonal space of the central myelinated nerve fiber. J Ultrastruct Res. 1969 Jul;28(1):141–149. doi: 10.1016/s0022-5320(69)90012-4. [DOI] [PubMed] [Google Scholar]
  15. Klemm H. Das Perineurium als Diffusionsbarriere gegenüber Peroxydase bei epi- und endoneuraler Applikation. Z Zellforsch Mikrosk Anat. 1970;108(3):431–445. [PubMed] [Google Scholar]
  16. Livingston R. B., Pfenniger K., Moor H., Akert K. Specialized paranodal and interparanodal glial-axonal junctions in the peripheral and central nervous system: a freeze-etching study. Brain Res. 1973 Aug 17;58(1):1–24. doi: 10.1016/0006-8993(73)90820-2. [DOI] [PubMed] [Google Scholar]
  17. Luft J. H. Ruthenium red and violet. II. Fine structural localization in animal tissues. Anat Rec. 1971 Nov;171(3):369–415. doi: 10.1002/ar.1091710303. [DOI] [PubMed] [Google Scholar]
  18. Machen T. E., Erlij D., Wooding F. B. Permeable junctional complexes. The movement of lanthanum across rabbit gallbladder and intestine. J Cell Biol. 1972 Aug;54(2):302–312. doi: 10.1083/jcb.54.2.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Martínez-Palomo A., Erlij D. Structure of tight junctions in epithelia with different permeability. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4487–4491. doi: 10.1073/pnas.72.11.4487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mugnaini E., Schnapp B. Possible role of zonula occludens of the myelin sheath in demyelinating conditions. Nature. 1974 Oct 25;251(5477):725–727. doi: 10.1038/251725a0. [DOI] [PubMed] [Google Scholar]
  21. Møllgård K., Milinowska D. H., Saunders N. R. Lack of correlation between tight junction morphology and permeability properties in developing choroid plexus. Nature. 1976 Nov 18;264(5583):293–294. doi: 10.1038/264293a0. [DOI] [PubMed] [Google Scholar]
  22. Revel J. P., Hamilton D. W. The double nature of the intermediate dense line in peripheral nerve myelin. Anat Rec. 1969 Jan;163(1):7–15. doi: 10.1002/ar.1091630102. [DOI] [PubMed] [Google Scholar]
  23. Sandri C., Van Buren J. M., Akert K. Membrane morphology of the vertebrate nervous system. A study with freeze-etch technique. Prog Brain Res. 1977;46:1–384. [PubMed] [Google Scholar]
  24. Schatzki P. F., Newsome A. Neutralized lanthanum solution: a largely noncolloidal ultrastructural tracer. Stain Technol. 1975 May;50(3):171–178. doi: 10.3109/10520297509117054. [DOI] [PubMed] [Google Scholar]
  25. Schatzki P. F. The passage of radioactive lanthanum from the biliary to the vascular system. An electron microscopic and radioactive tracer study. Z Zellforsch Mikrosk Anat. 1971;119(4):451–459. doi: 10.1007/BF00455242. [DOI] [PubMed] [Google Scholar]
  26. Shivers R. R. Occluding-like junctions at mesaxons of central myelin in Anolis carolinensis are not 'tight'. A freeze-fracture-protein tracer analysis. Tissue Cell. 1979;11(2):353–358. doi: 10.1016/0040-8166(79)90048-x. [DOI] [PubMed] [Google Scholar]
  27. Singer M., Krishnan N., Fyfe D. A. Penetration of ruthenium red into peripheral nerve fibers. Anat Rec. 1972 Aug;173(4):375–389. doi: 10.1002/ar.1091730401. [DOI] [PubMed] [Google Scholar]
  28. Strum J. M. Lanthanum "staining* of the lateral and basal membranes of the mitochondria-rich cell in toad bladder epithelium. J Ultrastruct Res. 1977 May;59(2):126–139. doi: 10.1016/s0022-5320(77)80073-7. [DOI] [PubMed] [Google Scholar]
  29. Tabira T., Cullen M. J., Reier P. J., Webster H deF An experimental analysis of interlamellar tight junctions in amphibian and mammalian C.N.S. myelin. J Neurocytol. 1978 Aug;7(4):489–503. doi: 10.1007/BF01173993. [DOI] [PubMed] [Google Scholar]
  30. Tetzlaff W. The development of a zonula occludens in peripheral myelin of the chick embryo. A freeze-fracture study. Cell Tissue Res. 1978 May 29;189(2):187–201. doi: 10.1007/BF00209269. [DOI] [PubMed] [Google Scholar]
  31. Tetzlaff W. Tight junction contact events and temporary gap junctions in the sciatic nerve fibres of the chicken during Wallerian degeneration and subsequent regeneration. J Neurocytol. 1982 Oct;11(5):839–858. doi: 10.1007/BF01153522. [DOI] [PubMed] [Google Scholar]
  32. Thomas M. V., Leslie R. A. The physiological effects of ionic lanthanum on the insect blood-brain barrier. Experientia. 1976 Jun 15;32(6):720–721. doi: 10.1007/BF01919852. [DOI] [PubMed] [Google Scholar]
  33. Tisher C. C., Yarger W. E. Lanthanum permeability of the tight junction (zonula occludens) in the renal tubule of the rat. Kidney Int. 1973 Apr;3(4):238–250. doi: 10.1038/ki.1973.37. [DOI] [PubMed] [Google Scholar]
  34. Tisher C. C., Yarger W. E. Lanthanum permeability of tight junctions along the collecting duct of the rat. Kidney Int. 1975 Jan;7(1):35–44. doi: 10.1038/ki.1975.5. [DOI] [PubMed] [Google Scholar]
  35. Towfighi J., Gonatas N. The distribution of peroxidases in the sciatic nerves of normal and hexachlorophene intoxicated developing rats. J Neurocytol. 1977 Feb;6(1):39–47. doi: 10.1007/BF01175413. [DOI] [PubMed] [Google Scholar]
  36. Weihe E., Hartschuh W., Metz J., Brühl U. The use of ionic lanthanum as a diffusion tracer and as a marker of calcium binding sites. Cell Tissue Res. 1977 Mar 16;178(3):285–302. doi: 10.1007/BF00218693. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES