Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1977 Jan 1;161(1):3–11. doi: 10.1042/bj1610003

A pulse-radiolysis study of the catalytic mechanism of the iron-containing superoxide dismutase from Photobacterium leiognathi.

F Lavelle, M E McAdam, E M Fielden, P B Roberts
PMCID: PMC1164466  PMID: 15540

Abstract

The mechanism of the enzymic reaction of an iron-containing superoxide dismutase purified from the marine bacterium Photobacterium leiognathi was studied by using pulse radiolysis. Measurements of activity were done with two different preparations of enzyme containing either 1.6 or 1.15 g-atom of iron/mol. In both cases, identical values of the second-order rate constant for reaction between superoxide dismutase and the superoxide ion in the pH range 6.2-9.0 (k=5.5 X 10(8) M-1-S-1 at pH 8.0) were found. As with the bovine erythrocuprein, there was no evidence for substrate saturation. The effects of reducing agents (H2O2, sodium ascorbate or CO2 radicals) on the visible and the electron-paramagnetic-resonance spectra of the superoxide dismutase containing 1.6 g-atom of ferric iron/mol indicate that this enzyme contains two different types of iron. Turnover experiments demonstrate that only that fraction of the ferric iron that is reduced by H2O2 is involved in the catalysis, being alternately oxidized and reduced by O2; both the oxidation and the reduction steps have a rate constant equal to that measured under turnover conditions. These results are interpreted by assuming that the superoxide dismutase isolated from the organism contains 1 g-atom of catalytic iron/mol and a variable amount of non-catalytic iron. This interpretation is discused in relation to the stoicheiometry reported for iron-containing superoxide dismutases prepared from several other organisms.

Full text

PDF
3

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asada K., Yoshikawa K., Takahashi M., Maeda Y., Enmanji K. Superoxide dismutases from a blue-green alga, Plectonema boryanum. J Biol Chem. 1975 Apr 25;250(8):2801–2807. [PubMed] [Google Scholar]
  2. Bannister J. V., Bannister W. H., Bray R. C., Fielden E. M., Roberts P. B., Rotilio G. The superoxide dismutase activity of human erythrocuprein. FEBS Lett. 1973 Jun 1;32(2):303–306. doi: 10.1016/0014-5793(73)80859-2. [DOI] [PubMed] [Google Scholar]
  3. Beinert H., Palmer G. Contributions of EPR spectroscopy to our knowledge of oxidative enzymes. Adv Enzymol Relat Areas Mol Biol. 1965;27:105–198. doi: 10.1002/9780470122723.ch3. [DOI] [PubMed] [Google Scholar]
  4. Bray R. C., Cockle S. A., Fielden E. M., Roberts P. B., Rotilio G., Calabrese L. Reduction and inactivation of superoxide dismutase by hydrogen peroxide. Biochem J. 1974 Apr;139(1):43–48. doi: 10.1042/bj1390043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bridgen J., Harris J. I., Northrop F. Evolutionary relationships in superoxide dismutase. FEBS Lett. 1975 Jan 1;49(3):392–395. doi: 10.1016/0014-5793(75)80793-9. [DOI] [PubMed] [Google Scholar]
  6. Fielden E. M., Roberts P. B., Bray R. C., Lowe D. J., Mautner G. N., Rotilio G., Calabrese L. Mechanism of action of superoxide dismutase from pulse radiolysis and electron paramagnetic resonance. Evidence that only half the active sites function in catalysis. Biochem J. 1974 Apr;139(1):49–60. doi: 10.1042/bj1390049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Forman H. J., Fridovich I. Superoxide dismutase: a comparison of rate constants. Arch Biochem Biophys. 1973 Sep;158(1):396–400. doi: 10.1016/0003-9861(73)90636-x. [DOI] [PubMed] [Google Scholar]
  8. Fridovich I. Superoxide dismutases. Adv Enzymol Relat Areas Mol Biol. 1974;41(0):35–97. doi: 10.1002/9780470122860.ch2. [DOI] [PubMed] [Google Scholar]
  9. HACHIMORI Y., HORINISHI H., KURIHARA K., SHIBATA K. STATES OF AMINO ACID RESIDUES IN PROTEINS. V. DIFFERENT REACTIVITIES WITH H2O2 OF TRYPTOPHAN RESIDUES IN LYSOZYME, PROTEINASES AND ZYMOGENS. Biochim Biophys Acta. 1964 Nov 8;93:346–346. doi: 10.1016/0304-4165(64)90385-x. [DOI] [PubMed] [Google Scholar]
  10. Keele B. B., Jr, McCord J. M., Fridovich I. Superoxide dismutase from escherichia coli B. A new manganese-containing enzyme. J Biol Chem. 1970 Nov 25;245(22):6176–6181. [PubMed] [Google Scholar]
  11. Klug-Roth D., Fridovich I., Rabani J. Pulse radiolytic investigations of superoxide catalyzed disproportionation. Mechanism for bovine superoxide dismutase. J Am Chem Soc. 1973 May 2;95(9):2786–2790. doi: 10.1021/ja00790a007. [DOI] [PubMed] [Google Scholar]
  12. Klug D., Rabani J., Fridovich I. A direct demonstration of the catalytic action of superoxide dismutase through the use of pulse radiolysis. J Biol Chem. 1972 Aug 10;247(15):4839–4842. [PubMed] [Google Scholar]
  13. Lavelle F., Michelson A. M. Purification et étude des deux superoxyde dismutases du champignon Pleurotus olearius. Biochimie. 1975;57(3):375–381. doi: 10.1016/s0300-9084(75)80314-2. [DOI] [PubMed] [Google Scholar]
  14. Lumsden J., Hall D. O. Soluble & membrane-bound superoxide dismutases in a blue-green algae (Spirulina)and spinach. Biochem Biophys Res Commun. 1974 May 7;58(1):35–41. doi: 10.1016/0006-291x(74)90887-0. [DOI] [PubMed] [Google Scholar]
  15. MASSEY V. Studies on succinic dehydrogenase. VII. Valency state of the iron in beef heart succinic dehydrogenase. J Biol Chem. 1957 Dec;229(2):763–770. [PubMed] [Google Scholar]
  16. McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
  17. Misra H. P., Keele B. B., Jr The purification and properties of superoxide dismutase from a blue-green alga. Biochim Biophys Acta. 1975 Feb 27;379(2):418–425. doi: 10.1016/0005-2795(75)90148-8. [DOI] [PubMed] [Google Scholar]
  18. Pick M., Rabani J., Yost F., Fridovich I. The catalytic mechanism of the manganese-containing superoxide dismutase of Escherichia coli studied by pulse radiolysis. J Am Chem Soc. 1974 Nov 13;96(23):7329–7333. doi: 10.1021/ja00830a026. [DOI] [PubMed] [Google Scholar]
  19. Puget K., Michelson A. M. Iron containing superoxide dismutases from luminous bacteria. Biochimie. 1974;56(9):1255–1267. doi: 10.1016/s0300-9084(74)80019-2. [DOI] [PubMed] [Google Scholar]
  20. Ravindranath S. D., Fridovich I. Isolation and characterization of a manganese-containing superoxide dismutase from yeast. J Biol Chem. 1975 Aug 10;250(15):6107–6112. [PubMed] [Google Scholar]
  21. Rotilio G., Bray R. C., Fielden E. M. A pulse radiolysis study of superoxide dismutase. Biochim Biophys Acta. 1972 May 12;268(2):605–609. doi: 10.1016/0005-2744(72)90359-2. [DOI] [PubMed] [Google Scholar]
  22. Vance P. G., Keele B. B., Jr, Rajagopalan K. V. Superoxide dismutase from Streptococcus mutans. Isolation and characterization of two forms of the enzyme. J Biol Chem. 1972 Aug 10;247(15):4782–4786. [PubMed] [Google Scholar]
  23. Weisiger R. A., Fridovich I. Superoxide dismutase. Organelle specificity. J Biol Chem. 1973 May 25;248(10):3582–3592. [PubMed] [Google Scholar]
  24. Yamakura F. Purification, crystallization and properties of iron-containing superoxide dismutase from Pseudomonas ovalis. Biochim Biophys Acta. 1976 Feb 13;422(2):280–294. doi: 10.1016/0005-2744(76)90139-x. [DOI] [PubMed] [Google Scholar]
  25. Yost F. J., Jr, Fridovich I. An iron-containing superoxide dismutase from Escherichia coli. J Biol Chem. 1973 Jul 25;248(14):4905–4908. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES