Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1977 Jan 1;161(1):131–138. doi: 10.1042/bj1610131

Ionic-strength-dependent changes in the structure of the major protein of the human erythrocyte membrane.

R E Jenkins, M J Tanner
PMCID: PMC1164481  PMID: 851415

Abstract

The effect of ionic strength on the proteolysis by trypsin of the major membrane-penetrating protein (polypeptide 3) in the erythrocyte membrane was studied. Both the intracellular and extracellular regions of the protein are susceptible to trypsin proteolysis under hypo-osmotic conditions, whereas under iso-osmotic conditions the extracellular region of the protein is resistant to trypsin, and the intracellular region yields only two cleavage products with trypsin. Studies of the fragments obtained from polypeptide 3 by trypsin digestion under iso-osmotic conditions of 'ghosts' radioiodinated with lactoperoxidase confirmed our earlier conclusions that the polypeptide chain of polypeptide 3 traverses the membrane twice. Ionic-strength-dependent changes were also observed in the incorporation of iodine by lactoperoxidase into the individual extracellular tyrosine sites of the protein. These results show that polypeptide 3 undergoes ionic-strength-dependent changes in structure.

Full text

PDF
131

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bender W. W., Garan H., Berg H. C. Proteins of the human erythrocyte membrane as modified by pronase. J Mol Biol. 1971 Jun 28;58(3):783–797. doi: 10.1016/0022-2836(71)90040-4. [DOI] [PubMed] [Google Scholar]
  2. Boxer D. H., Jenkins R. E., Tanner M. J. The organization of the major protein of the human erythrocyte membrane. Biochem J. 1974 Mar;137(3):531–534. doi: 10.1042/bj1370531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bretscher M. S. A major protein which spans the human erythrocyte membrane. J Mol Biol. 1971 Jul 28;59(2):351–357. doi: 10.1016/0022-2836(71)90055-6. [DOI] [PubMed] [Google Scholar]
  4. Cabantchik Z. I., Rothstein A. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation. J Membr Biol. 1974;15(3):207–226. doi: 10.1007/BF01870088. [DOI] [PubMed] [Google Scholar]
  5. Hubbard A. L., Cohn Z. A. The enzymatic iodination of the red cell membrane. J Cell Biol. 1972 Nov;55(2):390–405. doi: 10.1083/jcb.55.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jenkins R. E., Tanner J. A. The major human erythrocyte membrane protein. Evidence for an S-shaped structure which traverses the membrane twice and contains a duplicated set of sites. Biochem J. 1975 Jun;147(3):393–399. doi: 10.1042/bj1470393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jenkins R. E., Tanner J. A. The structure of the major protein of the human erythrocyte membrane. Characterization of the intact protein and major fragments. Biochem J. 1977 Jan 1;161(1):139–147. doi: 10.1042/bj1610139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Reichstein E., Blostein R. Arrangement of human erythrocyte membrane proteins. J Biol Chem. 1975 Aug 25;250(16):6256–6263. [PubMed] [Google Scholar]
  9. Steck T. L., Fairbanks G., Wallach D. F. Disposition of the major proteins in the isolated erythrocyte membrane. Proteolytic dissection. Biochemistry. 1971 Jun 22;10(13):2617–2624. doi: 10.1021/bi00789a031. [DOI] [PubMed] [Google Scholar]
  10. Steck T. L., Ramos B., Strapazon E. Proteolytic dissection of band 3, the predominant transmembrane polypeptide of the human erythrocyte membrane. Biochemistry. 1976 Mar 9;15(5):1153–1161. doi: 10.1021/bi00650a030. [DOI] [PubMed] [Google Scholar]
  11. Steck T. L. The organization of proteins in the human red blood cell membrane. A review. J Cell Biol. 1974 Jul;62(1):1–19. doi: 10.1083/jcb.62.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Zaki L., Fasold H., Schuhmann B., Passow H. Chemical modification of membrane proteins in relation to inhibition of anion exchange in human red blood cells. J Cell Physiol. 1975 Dec;86(3 Pt 1):471–494. doi: 10.1002/jcp.1040860305. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES