Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1977 Feb 1;161(2):405–418. doi: 10.1042/bj1610405

The disulphide-bonded nature of procollagen and the role of the extension peptides in the assembly of the molecule.

R Harwood, A H Merry, D E Woolley, M E Grant, D S Jackson
PMCID: PMC1164518  PMID: 192195

Abstract

1. The molecular weights of chick tendon and cartilage procollagens, and their constituent polypeptides, were determined by gel filtration and gel electrophoresis. The values obtained are in good agreement and indicate that the mol.wts. of the secreted procollagens (types I and II) and their individual pro-alpha-chains are of the order of 405 000-445 000 and 137 000-145 000 respectively.2. Digestion of tendon procollagen with human rheumatoid synovial collagenase gave products consistent with the presence of large non-helical peptide extensions at both N-and C-termini. Electrophoretic analysis gave apparent mol.wts. of 17 500 and 36 000 for the respective N- and C-terminal extensions of pro-alpha1(I)-and pro-alpha2-chains, and inter-chain disulphide bonds were restricted to the C-terminal location. 3. During the biosynthesis of procollagen by tendon and cartilage cells a close correlation was observed between the extent of inter-chain disulphide bonding and the proportion of procollagen polypeptides having a triple-helical conformation. These processes appeared to commence in the rough endoplasmic reticulum and be completed in the smooth endoplasmic reticulum, but the rate at which they occur in cartilage cells is markedly slower than that found in tendon cells. 4. When the intracellular [14C]procollagen polypeptides present in the rough-endoplasmic-reticulum fractions of tendon and cartilage cells were analysed under non-reducing conditions on agarose/polyacrylamide composite gels, no significant pools of dimeric intermediates were detected. 5. In both cell types, inter-chain disulphide-bond formation occurred even when hydroxylation, and hence triple-helix formation, was inhibited. The presence of pro-alpha1- and pro-alpha2-components in a ratio of 2:1 in the disulphide-linked unhydroxylated procollagen isolated from tendon cells demonstrated that correct chain association occurs in the absence of hydroxylation. This observation is consistent with a model for the assembly of pro-gamma112-chains in which the recognition and selection of pro-alpha1-and pro-alpha2-chains in a 2:1 ratio are directed by the non-helical C-terminal extension peptides of tendon procollagen.

Full text

PDF
405

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bańkowski E., Mitchell W. M. Human procollagen I. An anionic tropocollagen precursor from skin fibroblasts in culture. Biophys Chem. 1973 Dec;1(2):73–86. doi: 10.1016/0301-4622(73)80003-1. [DOI] [PubMed] [Google Scholar]
  2. Berg R. A., Prockop D. J. Purification of (14C) protocollagen and its hydroxylation by prolyl-hydroxylase. Biochemistry. 1973 Aug 28;12(18):3395–3401. doi: 10.1021/bi00742a005. [DOI] [PubMed] [Google Scholar]
  3. Bornstein P. The biosynthesis of collagen. Annu Rev Biochem. 1974;43(0):567–603. doi: 10.1146/annurev.bi.43.070174.003031. [DOI] [PubMed] [Google Scholar]
  4. Byers P. H., Click E. M., Harper E., Bornstein P. Interchain disulfide bonds in procollagen are located in a large nontriple-helical COOH-terminal domain. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3009–3013. doi: 10.1073/pnas.72.8.3009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Church R. L., Pfeiffer S. E., Tanzer M. L. Collagen biosynthesis: synthesis and secretion of a high molecular weight collagen precursor (procollagen). Proc Natl Acad Sci U S A. 1971 Nov;68(11):2638–2642. doi: 10.1073/pnas.68.11.2638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dahlberg A. E., Dingman C. W., Peacock A. C. Electrophoretic characterization of bacterial polyribosomes in agarose-acrylamide composite gels. J Mol Biol. 1969 Apr 14;41(1):139–147. doi: 10.1016/0022-2836(69)90131-4. [DOI] [PubMed] [Google Scholar]
  7. Dehm P., Jimenez S. A., Olsen B. R., Prockop D. J. A transport form of collagen from embryonic tendon: electron microscopic demonstration of an NH 2 -terminal extension and evidence suggesting the presence of cystine in the molecule (chick embryo-tropocollagen-gel filtration). Proc Natl Acad Sci U S A. 1972 Jan;69(1):60–64. doi: 10.1073/pnas.69.1.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dehm P., Prockop D. J. Biosynthesis of cartilage procollagen. Eur J Biochem. 1973 May;35(1):159–166. doi: 10.1111/j.1432-1033.1973.tb02821.x. [DOI] [PubMed] [Google Scholar]
  9. Dingman C. W., Kafefuda T., Aronow A. Rat liver cytoplasmic ribonucleic acids: some aspects of their localization and isolation. Biochim Biophys Acta. 1970 Nov 12;224(1):114–127. doi: 10.1016/0005-2787(70)90625-8. [DOI] [PubMed] [Google Scholar]
  10. Dingman C. W., Peacock A. C. Analytical studies on nuclear ribonucleic acid using polyacrylamide gel electrophoresis. Biochemistry. 1968 Feb;7(2):659–668. doi: 10.1021/bi00842a022. [DOI] [PubMed] [Google Scholar]
  11. Fessler L. I., Burgeson R. E., Morris N. P., Fessler J. H. Collagen synthesis: a disulfide-linked collagen precursor in chick bone. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2993–2996. doi: 10.1073/pnas.70.10.2993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fessler L. I., Fessler J. H. Protein assembly of procollagen and effects of hydroxylation. J Biol Chem. 1974 Dec 10;249(23):7637–7646. [PubMed] [Google Scholar]
  13. Fessler L. I., Morris N. P., Fessler J. H. Procollagen: biological scission of amino and carboxyl extension peptides. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4905–4909. doi: 10.1073/pnas.72.12.4905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Furthmayr H., Timpl R. Characterization of collagen peptides by sodium dodecylsulfate-polyacrylamide electrophoresis. Anal Biochem. 1971 Jun;41(2):510–516. doi: 10.1016/0003-2697(71)90173-4. [DOI] [PubMed] [Google Scholar]
  15. Grant M. E., Jackson D. S. The biosynthesis of procollagen. Essays Biochem. 1976;12:77–113. [PubMed] [Google Scholar]
  16. Grant M. E., Kefalides N. A., Prockop D. J. The biosynthesis of basement membrane collagen in embryonic chick lens. II. Synthesis of a precursor form by matrix-free cells and a time-dependent conversion to chains in intact lens. J Biol Chem. 1972 Jun 10;247(11):3545–3551. [PubMed] [Google Scholar]
  17. Harwood R., Bhalla A. K., Grant M. E., Jackson D. S. The synthesis and secretion of cartilage procollagen. Biochem J. 1975 Apr;148(1):129–138. doi: 10.1042/bj1480129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Harwood R., Grant M. E., Jackson D. S. Collagen biosynthesis. Characterization of subcellular fractions from embyonic chick fibroblasts and the intracellular localization of protocollagen prolyl and protocollagen lysyl hydroxylases. Biochem J. 1974 Oct;144(1):123–130. doi: 10.1042/bj1440123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Harwood R., Grant M. E., Jackson D. S. Influence of ascorbic acid on ribosomal patterns and collagen biosynthesis in healing wounds of scorbutic guinea pigs. Biochem J. 1974 Sep;142(3):641–651. doi: 10.1042/bj1420641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Harwood R., Grant M. E., Jackson D. S. Secretion of procollagen: evidence for the transfer of nascent polypeptides across microsomal membranes of tendon cells. Biochem Biophys Res Commun. 1974 Aug 5;59(3):947–954. doi: 10.1016/s0006-291x(74)80071-9. [DOI] [PubMed] [Google Scholar]
  21. Harwood R., Grant M. E., Jackson D. S. The sub-cellular location of inter-chain disulfide bond formation during procollagen biosynthesis by embryonic chick tendon cells. Biochem Biophys Res Commun. 1973 Dec 19;55(4):1188–1196. doi: 10.1016/s0006-291x(73)80020-8. [DOI] [PubMed] [Google Scholar]
  22. Harwood R., Grant M. E., Jackson D. S. Translation of type I and type II procollagen messengers in a cell-free system derived from wheat germ. FEBS Lett. 1975 Sep 1;57(1):47–50. doi: 10.1016/0014-5793(75)80149-9. [DOI] [PubMed] [Google Scholar]
  23. Hulmes D. J., Miller A., Parry D. A., Piez K. A., Woodhead-Galloway J. Analysis of the primary structure of collagen for the origins of molecular packing. J Mol Biol. 1973 Sep 5;79(1):137–148. doi: 10.1016/0022-2836(73)90275-1. [DOI] [PubMed] [Google Scholar]
  24. Jackson D. S., Cleary E. G. The determination of collagen and elastin. Methods Biochem Anal. 1967;15:25–76. doi: 10.1002/9780470110331.ch2. [DOI] [PubMed] [Google Scholar]
  25. Jimenez S. A., Dehm P., Olsen B. R., Prokop D. J. Intracellular collagen and protocollagen from embryonic tendon cells. J Biol Chem. 1973 Jan 25;248(2):720–729. [PubMed] [Google Scholar]
  26. Jimenez S. A., Dehm P., Prockop D. J. Further evidence for a transport form of collagen. Its extrusion and extracellular conversion to tropocollagen in embryonic tendon. FEBS Lett. 1971 Oct 1;17(2):245–248. doi: 10.1016/0014-5793(71)80156-4. [DOI] [PubMed] [Google Scholar]
  27. Juva K., Prockop D. J. Modified procedure for the assay of H-3-or C-14-labeled hydroxyproline. Anal Biochem. 1966 Apr;15(1):77–83. doi: 10.1016/0003-2697(66)90249-1. [DOI] [PubMed] [Google Scholar]
  28. Kühn K. The structure of collagen. Essays Biochem. 1969;5:59–87. [PubMed] [Google Scholar]
  29. Loening U. E. The fractionation of high-molecular-weight ribonucleic acid by polyacrylamide-gel electrophoresis. Biochem J. 1967 Jan;102(1):251–257. doi: 10.1042/bj1020251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Martin G. R., Byers P. H., Piez K. A. Procollagen. Adv Enzymol Relat Areas Mol Biol. 1975;42:167–191. doi: 10.1002/9780470122877.ch3. [DOI] [PubMed] [Google Scholar]
  31. Merry A. H., Harwood R., Woolley D. E., Grant M. E., Jackson D. S. Identification and partial characterisation of the non-collagenous amino- and carboxyl-terminal extension peptides of cartilage procollagen. Biochem Biophys Res Commun. 1976 Jul 12;71(1):83–90. doi: 10.1016/0006-291x(76)90252-7. [DOI] [PubMed] [Google Scholar]
  32. Miller E. J., Matukas V. J. Biosynthesis of collagen. The biochemist's view. Fed Proc. 1974 May;33(5):1197–1204. [PubMed] [Google Scholar]
  33. Morris N. P., Fessler L. I., Weinstock A., Fessler J. H. Procollagen assembly and secretion in embryonic chick bone. J Biol Chem. 1975 Jul 25;250(14):5719–5726. [PubMed] [Google Scholar]
  34. Murphy L., Rosenbloom J. Evidence that chick tendon procollagen must be denatured to serve as substrate for proline hydroxylase. Biochem J. 1973 Sep;135(1):249–251. doi: 10.1042/bj1350249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Myllylä R., Risteli L., Kivirikko K. I. Glucosylation of galactosylhydroxylysyl residues in collagen in vitro by collagen glucosyltransferase. Inhibition by triple-helical conformation of the substrate. Eur J Biochem. 1975 Oct 15;58(2):517–521. doi: 10.1111/j.1432-1033.1975.tb02400.x. [DOI] [PubMed] [Google Scholar]
  36. Müller P. K., Meigel W. N., Pontz B. F., Raisch K. Influence of alpha, alpha-dipyridyl on the biosynthesis of collagen in organ cultures. Hoppe Seylers Z Physiol Chem. 1974 Aug;355(8):985–996. doi: 10.1515/bchm2.1974.355.2.985. [DOI] [PubMed] [Google Scholar]
  37. Neville D. M., Jr Molecular weight determination of protein-dodecyl sulfate complexes by gel electrophoresis in a discontinuous buffer system. J Biol Chem. 1971 Oct 25;246(20):6328–6334. [PubMed] [Google Scholar]
  38. Olsen B. R., Hoffmann H., Prockop D. J. Interchain disulfide bonds at the COOH-terminal end of procollagen synthesized by matrix-free cells from chick embryonic tendon and cartilage. Arch Biochem Biophys. 1976 Jul;175(1):341–350. doi: 10.1016/0003-9861(76)90516-6. [DOI] [PubMed] [Google Scholar]
  39. Park E., Tanzer M. L., Church R. L. Procollagen synthesis in cell culture: nascent chain population consistent with polycistronic mRNA. Biochem Biophys Res Commun. 1975 Mar 3;63(1):1–10. doi: 10.1016/s0006-291x(75)80002-7. [DOI] [PubMed] [Google Scholar]
  40. Peacock A. C., Dingman C. W. Molecular weight estimation and separation of ribonucleic acid by electrophoresis in agarose-acrylamide composite gels. Biochemistry. 1968 Feb;7(2):668–674. doi: 10.1021/bi00842a023. [DOI] [PubMed] [Google Scholar]
  41. Peterkofsky B., Diegelmann R. Use of a mixture of proteinase-free collagenases for the specific assay of radioactive collagen in the presence of other proteins. Biochemistry. 1971 Mar 16;10(6):988–994. doi: 10.1021/bi00782a009. [DOI] [PubMed] [Google Scholar]
  42. Risteli L., Myllyä R., Kivirikko K. I. Partial purification and characterization of collagen galactosyltransferase from chick embryos. Biochem J. 1976 Apr 1;155(1):145–153. doi: 10.1042/bj1550145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Rosenbloom J., Endo R., Harsch M. Termination of procollagen chain synthesis by puromycin. Evidence that assembly and secretion require a COOH-terminal extension. J Biol Chem. 1976 Apr 10;251(7):2070–2076. [PubMed] [Google Scholar]
  44. Ryhänen L., Kivirikko K. I. Hydroxylation of lysyl residues in native and denatured protocollagen by protocollagen lysyl hydroxylase in vitro. Biochim Biophys Acta. 1974 Mar 20;343(1):129–137. doi: 10.1016/0304-4165(74)90244-x. [DOI] [PubMed] [Google Scholar]
  45. Schofield J. D., Uitto J., Prockop D. J. Formation of interchain disulfide bonds and helical structure during biosynthesis of procollagen by embryonic tendon cells. Biochemistry. 1974 Apr 23;13(9):1801–1806. doi: 10.1021/bi00706a004. [DOI] [PubMed] [Google Scholar]
  46. Speakman P. T. Proposed mechanism for the biological assembly of collagen triple helix. Nature. 1971 Jan 22;229(5282):241–243. doi: 10.1038/229241a0. [DOI] [PubMed] [Google Scholar]
  47. Tanzer M. L., Church R. L., Yaeger J. A., Wampler D. E., Park E. Procollagen: intermediate forms containing several types of peptide chains and non-collagen peptide extensions at NH2 and COOH ends. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3009–3013. doi: 10.1073/pnas.71.8.3009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Uitto J., Hoffman H., Prockop D. J. Retention of nonhelical procollagen containing cis-hydroxyproline in rough endoplasmic reticulum. Science. 1975 Dec 19;190(4220):1202–1204. doi: 10.1126/science.1198105. [DOI] [PubMed] [Google Scholar]
  49. Uitto J., Prockop D. J. Biosynthesis of cartilage procollagen. Influence of chain association and hydroxylation of prolyl residues on the folding of the polypeptides into the triple-helical conformation. Biochemistry. 1974 Oct 22;13(22):4586–4591. doi: 10.1021/bi00719a018. [DOI] [PubMed] [Google Scholar]
  50. Uitto J., Prockop D. J. Intracellular hydroxylation of non-helical protocollagen to form triple-helical procollagen and subsequent secretion of the molecule. Eur J Biochem. 1974 Apr 1;43(2):221–230. doi: 10.1111/j.1432-1033.1974.tb03403.x. [DOI] [PubMed] [Google Scholar]
  51. Vuust J., Piez K. A. A kinetic study of collagen biosynthesis. J Biol Chem. 1972 Feb 10;247(3):856–862. [PubMed] [Google Scholar]
  52. Vuust J., Piez K. A. Biosynthesis of the alpha chains of collagen studied by pulse-labeling in culture. J Biol Chem. 1970 Nov 25;245(22):6201–6207. [PubMed] [Google Scholar]
  53. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  54. Woolley D. E., Lindberg K. A., Glanville R. W., Evanson J. M. Action of rheumatoid synovial collagenase on cartilage collagen. Different susceptibilities of cartilage and tendon collagen to collagenase attack. Eur J Biochem. 1975 Jan 2;50(2):437–444. doi: 10.1111/j.1432-1033.1975.tb09821.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES