Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1977 Jan 15;162(1):25–32. doi: 10.1042/bj1620025

Factors controlling the activities of phosphatidate phosphohydrolase and phosphatidate cytidylyltransferase. The effects of chlorpromazine, demethylimipramine, cinchocaine, norfenfluramine, mepyramine and magnesium ions.

R G Sturton, D N Brindley
PMCID: PMC1164565  PMID: 192211

Abstract

1. Microsomal membranes from rat liver were incubated with ATP, CoA, Mg2+, [14C]palmitate, F- and sn-glycerol 3-phosphate in order to label them with [14C]phosphatidate. These membranes were isolated and used in a second incubation in which [3H]CTP was present, and the simultaneous synthesis of [14C]diacylglycerol and [3H]CDP-diacylglycerol was measured. 2. The addition of phosphatidate phosphohydrolase, which had been partially purified from the particle-free supernatant, supplemented the activity of the endogenous phosphohydrolase, but it did not alter the rate of CDP-diacylglycerol formation. 3. Adding EDTA inhibited phosphatidate cytidylyl-transferase activity and stimulated the activity of the phosphohydrolases by removing excess of Mg2+. 4. Increasing the concentration of Mg2+, norfenfluramine or chlorpromazine in the assay system stimulated cytidylyltransferase activity, but decreased the activities of both phosphohydrolases. 5. The mechanism for the stimulation of cytidylyl=transferase activity by the cationic drugs and Mg2+ was investigated with emulsions of phosphatidate and the microsomal fraction of rat liver. 6. There was a threshold concentration of about 5mM-MgCl2 below which no cytidylyltransferase activity was detected in the presence or absence of norfenfluramine. Just above this threshold concentration norfenfluramine stimulated cytidylyltransferase activity, but this stimulation disappeared as the Mg2+ concentration was raised to its optimum of 20mM. Norfenfluramine therefore partially replaced the bivalent-cation requirement. 7. At 30 mM-MgCl2 amphiphilic cationic drugs inhibited cytidylyltransferase activity at relatively high concentrations in a non-competitive manner with respect to phosphatidate. 8. The implications of these results are discussed with respect to the regulation of the synthesis of the acidic phospholipids compared with the synthesis of phosphatidylcholine, phosphatidylethanolamine and triacylglycerol.

Full text

PDF
25

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdel-Latif A. A., Smith J. P. Effects of DL-propranolol on the synthesis of glycerolipids by rabbit iris muscle. Biochem Pharmacol. 1976 Aug 1;25(15):1697–1704. doi: 10.1016/0006-2952(76)90401-9. [DOI] [PubMed] [Google Scholar]
  2. Allan D., Michell R. H. Enhanced synthesis de novo of phosphatidylinositol in lymphocytes treated with cationic amphiphilic drugs. Biochem J. 1975 Jun;148(3):471–478. doi: 10.1042/bj1480471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brindley D. N., Allan D., Michell R. H. Letter: The redirection of glyceride and phospholipid synthesis by drugs including chlorpromazine, fenfluramine, imipramine, mepyramine and local anaesthetics. J Pharm Pharmacol. 1975 Jun;27(6):462–464. [PubMed] [Google Scholar]
  4. Brindley D. N., Bowley M., Burditt S., Pritchard H., Lloyd-Davies K. A., Boucrot P. The effects of administering N-(2-benzoyloxyethyl) norfenfluramine to rats on the hepatic synthesis of glycerolipids. J Pharm Pharmacol. 1976 Sep;28(9):676–682. doi: 10.1111/j.2042-7158.1976.tb02835.x. [DOI] [PubMed] [Google Scholar]
  5. Brindley D. N., Bowley M. Drugs affecting the synthesis of glycerides and phospholipids in rat liver. The effects of clofibrate, halofenate, fenfluramine, amphetamine, cinchocaine, chlorpromazine, demethylimipramine, mepyramine and some of their derivatives. Biochem J. 1975 Jun;148(3):461–469. doi: 10.1042/bj1480461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carter J. R., Kennedy E. P. Enzymatic synthesis of cytidine diphosphate diglyceride. J Lipid Res. 1966 Sep;7(5):678–683. [PubMed] [Google Scholar]
  7. DAVIDSON F. M., LONG C. The structure of the naturally occurring phosphoglycerides. 4. Action of cabbage-leaf phospholipase D on ovolecithin and related substances. Biochem J. 1958 Jul;69(3):458–466. doi: 10.1042/bj0690458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eichberg J., Hauser G. Stimulation by local anesthetics of the metabolism of acidic phospholipids in the rat pineal gland. Biochem Biophys Res Commun. 1974 Oct 23;60(4):1460–1467. doi: 10.1016/0006-291x(74)90362-3. [DOI] [PubMed] [Google Scholar]
  9. Freinkel N., El Younsi C., Dawson M. C. Inter-relations between the phospholipids of rat pancreatic islets during glucose stimulation, and their response to medium inositol and tetracaine. Eur J Biochem. 1975 Nov 1;59(1):245–252. doi: 10.1111/j.1432-1033.1975.tb02448.x. [DOI] [PubMed] [Google Scholar]
  10. Hajra A. K., Seguin E. B., Agranoff B. W. Rapid labeling of mitochondrial lipids by labeled orthophosphate and adenosine triphosphate. J Biol Chem. 1968 Apr 10;243(7):1609–1616. [PubMed] [Google Scholar]
  11. Hauser G., Eichberg J. Identification of cytidine diphosphate-diglyceride in the pineal gland of the rat and its accumulation in the presence of DL-propranolol. J Biol Chem. 1975 Jan 10;250(1):105–112. [PubMed] [Google Scholar]
  12. Holub B. J., Piekarski J. Biosynthesis of molecular species of CDP-diglyceride from endogenously-labeled phosphatidate in rat liver microsomes. Lipids. 1976 Apr;11(4):251–257. doi: 10.1007/BF02544050. [DOI] [PubMed] [Google Scholar]
  13. Hosaka K., Yamashita S., Numa S. Partial purification, properties, and subcellulsr distribution of rat liver phosphatidate phosphatase. J Biochem. 1975 Mar;77(3):501–509. doi: 10.1093/oxfordjournals.jbchem.a130751. [DOI] [PubMed] [Google Scholar]
  14. Hübscher G., West G. R., Brindley D. N. Studies on the fractionation of mucosal homogenates from the small intestine. Biochem J. 1965 Dec;97(3):629–642. doi: 10.1042/bj0970629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jungalwala F. B., Freinkel N., Dawson R. M. The metabolism of phosphatidylinositol in the thyroid gland of the pig. Biochem J. 1971 Jun;123(1):19–33. doi: 10.1042/bj1230019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lawther P. J., Waller R. E. Physical hazards. Postgrad Med J. 1975;51 (Suppl 2):suppl 51–9. [PubMed] [Google Scholar]
  17. Mangiapane E. H., Lloyd-Davies K. A., Brindley D. N. A study of some enzymes of glycerolipid biosynthesis in rat liver after subtotal hepatectomy. Biochem J. 1973 May;134(1):103–112. doi: 10.1042/bj1340103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Michell R. H., Allan D., Bowley M., Brindley D. N. A possible metabolic explanation for drug-induced phospholipidosis. J Pharm Pharmacol. 1976 Apr;28(4):331–332. doi: 10.1111/j.2042-7158.1976.tb04172.x. [DOI] [PubMed] [Google Scholar]
  19. Mitchell M. P., Brindley D. N., Hübscher G. Properties of phosphatidate phosphohydrolase. Eur J Biochem. 1971 Jan;18(2):214–220. doi: 10.1111/j.1432-1033.1971.tb01233.x. [DOI] [PubMed] [Google Scholar]
  20. Mulé S. J. Inhibition of phospholipid-facilitated calcium transport by central nervous system-acting drugs. Biochem Pharmacol. 1969 Feb;18(2):339–346. doi: 10.1016/0006-2952(69)90211-1. [DOI] [PubMed] [Google Scholar]
  21. Oki S. Effect of local anesthetics on phospholipid bilayers. Biochim Biophys Acta. 1970;219(1):18–27. doi: 10.1016/0005-2736(70)90057-x. [DOI] [PubMed] [Google Scholar]
  22. Papahadjopoulos D., Jacobson K., Poste G., Shepherd G. Effects of local anesthetics on membrane properties. I. Changes in the fluidity of phospholipid bilayers. Biochim Biophys Acta. 1975 Jul 18;394(4):504–519. doi: 10.1016/0005-2736(75)90137-6. [DOI] [PubMed] [Google Scholar]
  23. Papahadjopoulos D. Phospholipid model membranes. 3. Antagonistic effects of Ca2+ and local anesthetics on the permeability of phosphatidylserine vesicles. Biochim Biophys Acta. 1970 Sep 15;211(3):467–477. doi: 10.1016/0005-2736(70)90252-x. [DOI] [PubMed] [Google Scholar]
  24. Raetz C. R., Dowhan W., Kennedy E. P. Partial purification and characterization of cytidine 5'-diphosphate-diglyceride hydrolase from membranes of Escherichia coli. J Bacteriol. 1976 Mar;125(3):855–863. doi: 10.1128/jb.125.3.855-863.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Renkonen O. Mono- and dimethyl phosphatidates from different subtypes of choline and ethanolamine glycerophosphatides. Biochim Biophys Acta. 1968 Jan 10;152(1):114–135. doi: 10.1016/0005-2760(68)90014-3. [DOI] [PubMed] [Google Scholar]
  26. SINGLETON W. S., GRAY M. S., BROWN M. L., WHITE J. L. CHROMATOGRAPHICALLY HOMOGENEOUS LECITHIN FROM EGG PHOSPHOLIPIDS. J Am Oil Chem Soc. 1965 Jan;42:53–56. doi: 10.1007/BF02558256. [DOI] [PubMed] [Google Scholar]
  27. Sánchez M., Nicholls D. G., Brindley D. N. [The relationship between palmitoyl-coenzyme A synthetase activity and esterification of sn-glycerol 3-phosphate in rat liver mitochondria]. Biochem J. 1973 Apr;132(4):697–706. doi: 10.1042/bj1320697. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES