Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1977 Jan 15;162(1):75–85. doi: 10.1042/bj1620075

The oxidation-reduction potential of the reaction-centre chlorophyll (P700) in Photosystem I. Evidence for multiple components in electron-paramagnetic-resonance signal 1 at low temperature.

M C Evans, C K Sihra, A R Slabas
PMCID: PMC1164571  PMID: 192214

Abstract

The oxidation-reduction potential of the reaction-centre chlorophyll of Photosystem I (P700) in spinach chloroplasts was determined by using the ability of the reaction centre to photoreduce the bound ferredoxin and to photo-oxidize P700 on illumination at 20K as an indicator of the oxidation state of P700. This procedure shows that P700 is oxidized with Em (pH8.0)(mid-point redox potential at pH8.0)congruent to +375mV. Further oxidation of the chloroplast preparations by high concentrations of K3Fe(CN)6(10mM) in the presence of mediating dyes leads to the appearance of a large radical signal with an apparent Em congruent to +470mVA second, light-inducible, radical also appears over the same potential range. We propose that these signals are due to bulk chlorophyll oxidation and not, as was previously thought [Knaff & Malkin (1973) Arch. Biochem. Biophys. 159, 555-562], to reaction-centre oxidation. A number of optical techniques were used to determine Em of P700. Dual-wavelength spectroscopy (697-720nm) indicates Em congruent to +460-+480mV. The spectrum of the sample during the titration showed a large contribution to the signal by bulk chlorophyll oxidation, in agreement with the electron-paramagnetic-resonance results and those of Ke, Sugahara & Shaw [(1975) Biochim. Biophys. Acta 408, 12-25]. The light-induced absorbance change at 435 nm, usually attributed to P700, showed a potential dependence similar to that of bulk chlorophyll oxidation. Determination of Em of P700 on the basis of the appearance of the P700 signal in oxidized-versus-reduced difference spectra showed Em (pH8.0) congruent to +360mV. Measurements of the effect of potential on the irreversible photo-oxidation of P700 at 77K showed that P700 became oxidized in this potential range. We conclude that the reaction-centre chlorophyll of Photosystem I has Em (pH8.0) congruent to +375mV.

Full text

PDF
75

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEINERT H., KOK B. AN ATTEMPT AT QUANTITATION OF THE SHARP LIGHT-INDUCED ELECTRON PARAMAGNETIC RESONANCE SIGNAL IN PHOTOSYNTHETIC MATERIALS. Biochim Biophys Acta. 1964 Sep 25;88:278–288. doi: 10.1016/0926-6577(64)90183-4. [DOI] [PubMed] [Google Scholar]
  2. BEINERT H., KOK B., HOCH G. The light induced electron paramagnetic resonance signal of photocatalyst P700. Biochem Biophys Res Commun. 1962 Apr 20;7:209–212. doi: 10.1016/0006-291x(62)90176-6. [DOI] [PubMed] [Google Scholar]
  3. Bearden A. J., Malkin R. Oxidation-reduction potential dependence of low-temperature photoreactions of chloroplast photosystem. II. Biochim Biophys Acta. 1973 Nov 22;325(2):266–275. doi: 10.1016/0005-2728(73)90102-3. [DOI] [PubMed] [Google Scholar]
  4. Bearden A. J., Malkin R. Quantitative EPR studies of the primary reaction of photosystem I in chloroplasts. Biochim Biophys Acta. 1972 Dec 14;283(3):456–468. doi: 10.1016/0005-2728(72)90262-9. [DOI] [PubMed] [Google Scholar]
  5. Bengis C., Nelson N. Purification and properties of the photosystem I reaction center from chloroplasts. J Biol Chem. 1975 Apr 25;250(8):2783–2788. [PubMed] [Google Scholar]
  6. Calvin M., Androes G. M. Primary Quantum Conversion in Photosynthesis: Low-temperature photoparamagnetism bespeaks electron transfer and migration as the earliest event. Science. 1962 Nov 23;138(3543):867–873. doi: 10.1126/science.138.3543.867. [DOI] [PubMed] [Google Scholar]
  7. Commoner B., Heise J. J., Townsend J. LIGHT-INDUCED PARAMAGNETISM IN CHLOROPLASTS. Proc Natl Acad Sci U S A. 1956 Oct;42(10):710–718. doi: 10.1073/pnas.42.10.710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dutton P. L. Oxidation-reduction potential dependence of the interaction of cytochromes, bacteriochlorophyll and carotenoids at 77 degrees K in chromatophores of Chromatium D and Rhodopseudomonas gelatinosa. Biochim Biophys Acta. 1971 Jan 12;226(1):63–80. doi: 10.1016/0005-2728(71)90178-2. [DOI] [PubMed] [Google Scholar]
  9. Evans M. C., Cammack R. The effect of the redox state of the bound iron-sulphur centres in spinach chloroplasts on the reversibility of P700 photooxidation at low temperatures. Biochem Biophys Res Commun. 1975 Mar 3;63(1):187–193. doi: 10.1016/s0006-291x(75)80028-3. [DOI] [PubMed] [Google Scholar]
  10. Evans M. C., Sihra C. K., Cammack R. The properties of the primary electron acceptor in the Photosystem I reaction centre of spinach chloroplasts and its interaction with P700 and the bound ferredoxin in various oxidation-reduction states. Biochem J. 1976 Jul 15;158(1):71–77. doi: 10.1042/bj1580071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Evans M. C., Telfer A., Lord A. V. Evidence for the role of a bound ferredoxin as the primary electron acceptor of photosystem I in spinach chloroplasts. Biochim Biophys Acta. 1972 Jun 23;267(3):530–537. doi: 10.1016/0005-2728(72)90181-8. [DOI] [PubMed] [Google Scholar]
  12. HJERTEN S., LEVIN O., TISELIUS A. Protein chromatography on calcium phosphate columns. Arch Biochem Biophys. 1956 Nov;65(1):132–155. doi: 10.1016/0003-9861(56)90183-7. [DOI] [PubMed] [Google Scholar]
  13. Hiyama T., Ke B. Difference spectra and extinction coefficients of P 700 . Biochim Biophys Acta. 1972 Apr 20;267(1):160–171. doi: 10.1016/0005-2728(72)90147-8. [DOI] [PubMed] [Google Scholar]
  14. KOK B. On the reversible absorption change at 705 mu in photosynthetic organisms. Biochim Biophys Acta. 1956 Nov;22(2):399–401. doi: 10.1016/0006-3002(56)90172-x. [DOI] [PubMed] [Google Scholar]
  15. KOK B. Partial purification and determination of oxidation reduction potential of the photosynthetic chlorophyll complex absorbing at 700 millimicrons. Biochim Biophys Acta. 1961 Apr 15;48:527–533. doi: 10.1016/0006-3002(61)90050-6. [DOI] [PubMed] [Google Scholar]
  16. Ke B., Sugahara K., Shaw E. R. Further purification of "Triton subchloroplast fraction I" (TSF-I particles). Isolation of a cytochrome-free high-P-700 particle and a complex containing cytochromes f and b6, plastocyanin and iron-sulfur protein(s). Biochim Biophys Acta. 1975 Oct 10;408(1):12–25. doi: 10.1016/0005-2728(75)90154-1. [DOI] [PubMed] [Google Scholar]
  17. Knaff D. B., Malkin R. The oxidation-reduction potentials of electron carriers in chloroplast photosystem I fragments. Arch Biochem Biophys. 1973 Nov;159(1):555–562. doi: 10.1016/0003-9861(73)90488-8. [DOI] [PubMed] [Google Scholar]
  18. Malkin R., Bearden A. J. Primary reactions of photosynthesis: photoreduction of a bound chloroplast ferredoxin at low temperature as detected by EPR spectroscopy. Proc Natl Acad Sci U S A. 1971 Jan;68(1):16–19. doi: 10.1073/pnas.68.1.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. RUMBERG B. ANALYSE DER PHOTOSYNTHESE MIT BLITZLIGHT. II. DIE EIGENSCHAFTEN DES REAKTIONSCYCLUS VON CHLOROPHYLL-A1-430-703. Z Naturforsch B. 1964 Aug;19:707–716. [PubMed] [Google Scholar]
  20. Sane P. V., Goodchild D. J., Park R. B. Characterization of chloroplast photosystems 1 and 2 separated by a non-detergent method. Biochim Biophys Acta. 1970 Aug 4;216(1):162–178. doi: 10.1016/0005-2728(70)90168-4. [DOI] [PubMed] [Google Scholar]
  21. Warden J. T., Jr, Bolton J. R. Simultaneous quantitative comparison of the optical changes at 700 nm (p700) and electron spin resonance signals in system I of green plant photosynthesis. J Am Chem Soc. 1973 Sep 19;95(19):6435–6436. doi: 10.1021/ja00800a046. [DOI] [PubMed] [Google Scholar]
  22. Witt H. T. Coupling of quanta, electrons, fields, ions and phosphrylation in the functional membrane of photosynthesis. Results by pulse spectroscopic methods. Q Rev Biophys. 1971 Nov;4(4):365–477. doi: 10.1017/s0033583500000834. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES