Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1977 Jan 15;162(1):99–107. doi: 10.1042/bj1620099

The metabolism of benzyl isothiocyanate and its cysteine conjugate.

G Brüsewitz, B D Cameron, L F Chasseaud, K Görler, D R Hawkins, H Koch, W H Mennicke
PMCID: PMC1164573  PMID: 15557

Abstract

1. The corresponding cysteine conjugate was formed when the GSH (reduced glutathione) or cysteinylglycine conjugates of benzyl isothiocyanate were incubated with rat liver or kidney homogenates. When the cysteine conjugate of benzyl isothiocyanate was similarly incubated in the presence of acetyl-CoA, the corresponding N-acetylcysteine conjugate (mercapturic acid) was formed. 2. The non-enzymic reaction of GSH with benzyl isothiocyanate was rapid and was catalysed by rat liver cytosol. 3. The mercapturic acid was excreted in the urine of rats dosed with benzyl isothiocyanate or its GSH, cysteinyl-glycine or cysteine conjugate, and was isolated as the dicyclohexylamine salt. 4. An oral dose of the cysteine conjugate of [14C]benzyl isothiocyanate was rapidly absorbed and excreted by rats and dogs. After 3 days, rats had excreted a mean of 92.4 and 5.6% of the dose in the urine and faeces respectively, and dogs had excreted a mean of 86.3 and 13.2% respectively. 5. After an oral dose of the cystein conjugate of [C]benzyl isothiocyanate, the major 14C-labelled metabolite in rat urine was the corresponding mercapturic acid (62% of the dose), whereas in dog urine it was hippuric acid (40% of the dose). 5. Mercapturic acid biosynthesis may be an important route of metabolism of certain isothiocyanates in some mammalian species.

Full text

PDF
99

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander M., Krüger H. H. Die therapie des lungensoor. Med Klin. 1965 Oct 22;60(43):1746–1748. [PubMed] [Google Scholar]
  2. BARNES M. M., JAMES S. P., WOOD P. B. The formation of mercapturic acids. 1. Formation of mercapturic acid and the levels of glutathione in tissues. Biochem J. 1959 Apr;71(4):680–690. doi: 10.1042/bj0710680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BRAY H. G., FRANKLIN T. J., JAMES S. P. The formation of mercapturic acids. 2. The possible role of glutathionase. Biochem J. 1959 Apr;71(4):690–696. doi: 10.1042/bj0710690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BRAY H. G., FRANKLIN T. J., JAMES S. P. The formation of mercapturic acids. 3. N-Acetylation of S-substituted cysteines in the rabbit, rat and guinea pig. Biochem J. 1959 Nov;73:465–473. doi: 10.1042/bj0730465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barnsley E. A., Eskin N. A., James S. P., Waring R. H. The acetylation of S-alkylcysteines by the rat. Biochem Pharmacol. 1969 Oct;18(10):2393–2401. doi: 10.1016/0006-2952(69)90354-2. [DOI] [PubMed] [Google Scholar]
  6. Borowski J. Infekt-Behandlung in der täglichen Praxis. Med Welt. 1966 Nov 5;45:2431–2433. [PubMed] [Google Scholar]
  7. Boyland E., Chasseaud L. F. Glutathione S-aralkyltransferase. Biochem J. 1969 Dec;115(5):985–991. doi: 10.1042/bj1150985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Boyland E., Chasseaud L. F. The role of glutathione and glutathione S-transferases in mercapturic acid biosynthesis. Adv Enzymol Relat Areas Mol Biol. 1969;32:173–219. doi: 10.1002/9780470122778.ch5. [DOI] [PubMed] [Google Scholar]
  9. Cameron B. D., Chasseaud L. F., Hawkins D. R. Metabolic fate of clopidol after repeated oral administration to rabbits. J Agric Food Chem. 1975 Mar-Apr;23(2):269–274. doi: 10.1021/jf60198a052. [DOI] [PubMed] [Google Scholar]
  10. Chasseaud L. F., Hawkins D. R., Cameron B. D., Fry B. J., Saggers V. H. The metabolic fate of bentazon in the rat. Xenobiotica. 1972 May;2(3):269–276. doi: 10.3109/00498257209111057. [DOI] [PubMed] [Google Scholar]
  11. Chasseaud L. F., Hawkins D. R., Fry B. J., Lewis J. D., Saggers V. H., Sword I. P. The metabolic fate of the coronary dilator 4-(3,4,5,-trimethoxycinnamoyl)-1-(N-isopropylcarbamoylmethyl)-piperazine in the rat, dog and man. Xenobiotica. 1974 Jul;4(7):393–407. doi: 10.3109/00498257409052104. [DOI] [PubMed] [Google Scholar]
  12. Chasseaud L. F. The nature and distribution of enzymes catalyzing the conjugation of glutathione with foreign compounds. Drug Metab Rev. 1973;2(2):185–220. doi: 10.3109/03602537409030009. [DOI] [PubMed] [Google Scholar]
  13. DANNENBERG H., STICKL H., WENZEL F. Uber den antimikrobisch wirkenden Stoff der Kapuzinerkresse (Tropaeolum maius). Hoppe Seylers Z Physiol Chem. 1956 Mar 17;303(3-6):248–256. [PubMed] [Google Scholar]
  14. Down W. H., Chasseaud L. F., Grundy R. K. Biotransformation of isosorbide dinitrate in humans. J Pharm Sci. 1974 Jul;63(7):1147–1149. doi: 10.1002/jps.2600630728. [DOI] [PubMed] [Google Scholar]
  15. Ebbinghaus K. D. Zur Langzeitbehandlung der Pyelonephritis. Med Welt. 1966 Jan 1;1:58–61. [PubMed] [Google Scholar]
  16. GERMER W. D. Ein neues Präparat für die antibiotische Therapie auf pflanzlicher Grundlage. Dtsch Med Wochenschr. 1954 Sep 24;79(39):1445–1448. doi: 10.1055/s-0028-1119880. [DOI] [PubMed] [Google Scholar]
  17. Green R. M., Elce J. S. Acetylation of S-substituted cysteines by a rat liver and kidney microsomal N-acetyltransferase. Biochem J. 1975 May;147(2):283–289. doi: 10.1042/bj1470283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. James S. P., Needham D. Some metabolites of S-pentyl-L-cysteine in the rabbit and other species. Xenobiotica. 1973 Apr;3(4):207–218. doi: 10.3109/00498257309151516. [DOI] [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Pabst M. J., Habig W. H., Jakoby W. B. Mercapturic acid formation: the several glutathione transferases of rat liver. Biochem Biophys Res Commun. 1973 Jun 19;52(4):1123–1128. doi: 10.1016/0006-291x(73)90616-5. [DOI] [PubMed] [Google Scholar]
  21. Pulverer G. Allyl isothiocyanate: a new broad-spectrum antibiotic from nasturtium. Ger Med Mon. 1969 Jan;14(1):27–30. [PubMed] [Google Scholar]
  22. REVEL J. P., BALL E. G. The reaction of glutathione with amino acids and related compounds as catalyzed by gamma-glutamyl transpeptidase. J Biol Chem. 1959 Mar;234(3):577–582. [PubMed] [Google Scholar]
  23. Underhill E. W., Chisholm M. D. Biosynthesis of mutard oil glucosides. 3. Formation of glucotropaeolin from L-phenylalanine-C14-N15. Biochem Biophys Res Commun. 1964;14:425–430. doi: 10.1016/0006-291x(64)90080-4. [DOI] [PubMed] [Google Scholar]
  24. WEST H. D., MATHURA G. R. Synthesis of some aryl-substituted L-cysteines and their fate in the animal body. J Biol Chem. 1954 May;208(1):315–318. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES