Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1977 Mar 15;162(3):591–599. doi: 10.1042/bj1620591

The absorption of protons with alpha-methyl glucoside and alpha-thioethyl glucoside by the yeast N.C.Y.C. 240. Evidence against the phosphorylation hypothesis.

R Brocklehurst, D Gardner, A A Eddy
PMCID: PMC1164642  PMID: 326255

Abstract

1. When yeast N.C.Y.C. 240 was grown with maltose in a complex medium based on yeast extract and peptone, washed cell preparations fermented alpha-methyl glucoside much more slowly than maltose. 2. The yeast absorbed alpha-methyl[14C]glucoside from a 10mM solution in the presence of antimycin and iodoacetamide, producing [14C]glucose, which accumulated outside the cells. The yeast itself contained hexose phosphates, trehalose, alpha-methyl glucoside and other products labelled with 14C, but no alpha-methyl glucoside phosphate. 3. About 1 equiv. of protons was absorbed with each equivalent of alpha-methylglucoside, and 1 equiv. of K+ ions left the yeast. 4. alpha-Thioethyl glucoside was also absorbed along with protons. Studies by g.l.c. showed that the yeast concentrated the compound without metabolizing it. 5. The presence of trehalose, sucrose, maltose, L-sorbose, glucose or alpha-phenyl glucoside in each case immediately stimulated proton uptake, whereas fructose, 3-O-methylglucose and 2-deoxyglucose failed to do so. 6. The observations support the conclusion that alpha-thioethyl glucoside, alpha-methyl glucoside and maltose are substrates of one or more proton symports, whereas they seem inconsistent with the notion that the absorption of alpha-methyl glucoside involves the phosphorylation of the carbohydrate [Van Stevenick (1970) Biochim. Biophys. Acta 203, 376-384].

Full text

PDF
591

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cockburn M., Earnshaw P., Eddy A. A. The stoicheiometry of the absorption of protons with phosphate and L-glutamate by yeasts of the genus Saccharomyces. Biochem J. 1975 Mar;146(3):705–712. doi: 10.1042/bj1460705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Eddy A. A., Nowacki J. A. Stoicheiometrical proton and potassium ion movements accompanying the absorption of amino acids by the yeast Saccharomyces carlsbergensis. Biochem J. 1971 May;122(5):701–711. doi: 10.1042/bj1220701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Heredia C. F., Sols A., DelaFuente G. Specificity of the constitutive hexose transport in yeast. Eur J Biochem. 1968 Aug;5(3):321–329. doi: 10.1111/j.1432-1033.1968.tb00373.x. [DOI] [PubMed] [Google Scholar]
  4. Kulaev I. S. Biochemistry of inorganic polyphosphates. Rev Physiol Biochem Pharmacol. 1975;73:131–158. doi: 10.1007/BFb0034661. [DOI] [PubMed] [Google Scholar]
  5. OKADA H., HALVORSON H. O. UPTAKE OF ALPHA-THIOETHYL D-GLUCOPYRANOSIDE BY SACCHAROMYCES CEREVISIAE. II. GENERAL CHARACTERISTICS OF AN ACTIVE TRANSPORT SYSTEM. Biochim Biophys Acta. 1964 Mar 16;82:547–555. doi: 10.1016/0304-4165(64)90446-5. [DOI] [PubMed] [Google Scholar]
  6. PORTEOUS J. W., CLARK B. THE ISOLATION AND CHARACTERIZATION OF SUBCELLULAR COMPONENTS OF THE EPITHELIAL CELLS OF RABBIT SMALL INTESTINE. Biochem J. 1965 Jul;96:159–171. doi: 10.1042/bj0960159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. ROBERTSON J. J., HALVORSON H. O. The components of maltozymase in yeast, and their behavior during deadaptation. J Bacteriol. 1957 Feb;73(2):186–198. doi: 10.1128/jb.73.2.186-198.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Seaston A., Carr G., Eddy A. A. The concentration of glycine by preparations of the yeast Saccharomyces Carlsbergensis depleted of adenosine triphosphate: Effects of proton gradients and uncoupling agents. Biochem J. 1976 Mar 15;154(3):669–676. doi: 10.1042/bj1540669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Seaston A., Inkson C., Eddy A. A. The absorption of protons with specific amino acids and carbohydrates by yeast. Biochem J. 1973 Aug;134(4):1031–1043. doi: 10.1042/bj1341031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Serrano R., Gancedo J. M., Gancedo C. Assay of yeast enzymes in situ. A potential tool in regulation studies. Eur J Biochem. 1973 May 2;34(3):479–482. doi: 10.1111/j.1432-1033.1973.tb02783.x. [DOI] [PubMed] [Google Scholar]
  11. de Kroon R. A., Koningsberger V. V. An inducible transport system for alpha-glucosides in protoplasts of Saccharomyces carlsbergensis. Biochim Biophys Acta. 1970 Apr 15;204(2):590–609. doi: 10.1016/0005-2787(70)90178-4. [DOI] [PubMed] [Google Scholar]
  12. ten Berge A. M. Genes for the fermentation of maltose and -methylglucoside in Saccharomyces carlsbergensis. Mol Gen Genet. 1972;115(1):80–88. doi: 10.1007/BF00272220. [DOI] [PubMed] [Google Scholar]
  13. van Steveninck J. The transport mechanism of -methylglucoside in yeast evidence for transport-associated phosphorylation. Biochim Biophys Acta. 1970 Jun 2;203(3):376–384. doi: 10.1016/0005-2736(70)90178-1. [DOI] [PubMed] [Google Scholar]
  14. van Steveninck J. Transport and transport-associated phosphorylation of galactose in Saccharomyces cerevisiae. Biochim Biophys Acta. 1972 Aug 9;274(2):575–583. doi: 10.1016/0005-2736(72)90204-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES