Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1977 Mar 15;162(3):627–634. doi: 10.1042/bj1620627

The appearance of gluconeogenesis at birth in sheep. Activation of the pathway associated with blood oxygenation.

D M Warnes, R F Seamark, F J Ballard
PMCID: PMC1164646  PMID: 194581

Abstract

1. Measurements of pyruvate carboxylase, mitochondrial phosphoenolpyruvate carboxykinase (GTP), hexose bisphosphatase and glucose 6-phosphatase in developing sheep liver showed substantial activities of all enzymes in the foetus, especially towards the end of gestation. Cytosol phosphoenolpyruvate carboxykinase (GTP) in livers of mid-term foetuses was only 10% of the activity at birth. 2. All enzymes except pyruvate carboxylase showed 1.5-2-fold increases after birth. 3. Gluconeogenesis form [14C]actate could not be detected in chronically cannulated sheep foetuses at any developmental stage and was not initiated by the infusion of adrenaline or glucagon. 4. An active pathway of gluconeogenesis was evident in vivo within 2 min after natural birth or within 4 min after Caesarian delivery of term lambs, and was delayed in prematurely delivered lambs until breathing was established and the blood fully oxygenated. 5. It is proposed that oxygen availability initiates gluconeogenesis in the newborn lamb.

Full text

PDF
627

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arinze I. J. On the development of phosphoenolpyruvate carboxykinase and gluconeogenesis in guinea pig liver. Biochem Biophys Res Commun. 1975 Jul 8;65(1):184–189. doi: 10.1016/s0006-291x(75)80077-5. [DOI] [PubMed] [Google Scholar]
  2. BALLARD F. J., OLIVER I. T. CARBOHYDRATE METABOLISM IN LIVER FROM FOETAL AND NEONATAL SHEEP. Biochem J. 1965 Apr;95:191–200. doi: 10.1042/bj0950191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ballard F. J. Electrophoretic and chromatographic separation of phosphoenolpyruvate carboxykinases. Biochim Biophys Acta. 1971 Aug 20;242(2):470–472. doi: 10.1016/0005-2744(71)90239-7. [DOI] [PubMed] [Google Scholar]
  4. Ballard F. J., Hanson R. W. Phosphoenolpyruvate carboxykinase and pyruvate carboxylase in developing rat liver. Biochem J. 1967 Sep;104(3):866–871. doi: 10.1042/bj1040866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ballard F. J., Hanson R. W. Purification of phosphoenolpyruvate carboxykinase from the cytosol fraction of rat liver and the immunochemical demonstration of differences between this enzyme and the mitochondrial phosphoenolpyruvate carboxykinase. J Biol Chem. 1969 Oct 25;244(20):5625–5630. [PubMed] [Google Scholar]
  6. Ballard F. J. Regulation of gluconeogenesis during exposure of young rats to hypoxic conditions. Biochem J. 1971 Jan;121(2):169–178. doi: 10.1042/bj1210169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ballard F. J. The development of gluconeogenesis in rat liver. Controlling factors in the newborn. Biochem J. 1971 Sep;124(2):265–274. doi: 10.1042/bj1240265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DAWKINS M. J. GLYCOGEN SYNTHESIS AND BREAKDOWN IN FETAL AND NEWBORN RAT LIVER. Ann N Y Acad Sci. 1963 Dec 30;111:203–211. doi: 10.1111/j.1749-6632.1963.tb36960.x. [DOI] [PubMed] [Google Scholar]
  9. Edwards E. M., Dhand U. K., Jeacock M. K., Shepherd D. A. Activities of enzymes concerned with pyruvate and oxaloacetate metabolism in the heart and liver of developing sheep. Biochim Biophys Acta. 1975 Aug 13;399(2):217–227. doi: 10.1016/0304-4165(75)90253-6. [DOI] [PubMed] [Google Scholar]
  10. Eisenstein A. B., Strack I., Steiner A. Glucagon stimulation of hepatic gluconeogenesis in rats fed a high-protein, carbohydrate-free diet. Metabolism. 1974 Jan;23(1):15–23. doi: 10.1016/0026-0495(74)90099-7. [DOI] [PubMed] [Google Scholar]
  11. Exton J. H. Gluconeogenesis. Metabolism. 1972 Oct;21(10):945–990. doi: 10.1016/0026-0495(72)90028-5. [DOI] [PubMed] [Google Scholar]
  12. Exton J. H., Park C. R. The stimulation of gluconeogenesis from lactate by epinephrine, glucagon, cyclic 3',5'-adenylate in the perfused rat liver. Pharmacol Rev. 1966 Mar;18(1):181–188. [PubMed] [Google Scholar]
  13. Girard J. R., Cuendet G. S., Marliss E. B., Kervran A., Rieutort M., Assan R. Fuels, hormones, and liver metabolism at term and during the early postnatal period in the rat. J Clin Invest. 1973 Dec;52(12):3190–3200. doi: 10.1172/JCI107519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Girard J. R., Zeghal N. Adrenal catecholamines content in fetal and newborn rats. Biol Neonate. 1975;26(3-4):205–213. doi: 10.1159/000240731. [DOI] [PubMed] [Google Scholar]
  15. Liggins G. C., Fairclough R. J., Grieves S. A., Kendall J. Z., Knox B. S. The mechanism of initiation of parturition in the ewe. Recent Prog Horm Res. 1973;29:111–159. doi: 10.1016/b978-0-12-571129-6.50007-5. [DOI] [PubMed] [Google Scholar]
  16. Mersmann H. J. Glycolytic and gluconeogenic enzyme levels in pre- and postnatal pigs. Am J Physiol. 1971 May;220(5):1297–1302. doi: 10.1152/ajplegacy.1971.220.5.1297. [DOI] [PubMed] [Google Scholar]
  17. Philippidis H., Ballard F. J. The development of gluconeogenesis in rat liver. Effects of glucagon and ether. Biochem J. 1970 Nov;120(2):385–392. doi: 10.1042/bj1200385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Philippidis H., Ballard F. J. The development of gluconeogenesis in rat liver: experiments in vivo. Biochem J. 1969 Jul;113(4):651–657. doi: 10.1042/bj1130651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. SHULL K. H., ASHMORE J., MAYER J. Hexokinase, glucose-6-phosphatase and phosphorylase levels in hereditarily obese-hyperglycemic mice. Arch Biochem Biophys. 1956 May;62(1):210–216. doi: 10.1016/0003-9861(56)90104-7. [DOI] [PubMed] [Google Scholar]
  20. TAKETA K., POGELL B. M. ALLOSTERIC INHIBITION OF RAT LIVER FRUCTOSE 1,6-DIPHOSPHATASE BY ADENOSINE 5'-MONOPHOSPHATE. J Biol Chem. 1965 Feb;240:651–662. [PubMed] [Google Scholar]
  21. TAUSSKY H. H., SHORR E. A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem. 1953 Jun;202(2):675–685. [PubMed] [Google Scholar]
  22. Taunton O. D., Stifel F. B., Greene H. L., Herman R. H. Rapid reciprocal changes of hepatic glycolytic enzymes and fructose-1,6-diphosphatase following glucagon and insulin injection in vivo. Biochem Biophys Res Commun. 1972 Sep 26;48(6):1663–1670. doi: 10.1016/0006-291x(72)90906-0. [DOI] [PubMed] [Google Scholar]
  23. UTTER M. F., KEECH D. B. PYRUVATE CARBOXYLASE. I. NATURE OF THE REACTION. J Biol Chem. 1963 Aug;238:2603–2608. [PubMed] [Google Scholar]
  24. Warnes D. M., Seamark R. F., Ballard F. J. Metabolism of glucose, fructose and lactate in vivo in chronically cannulated foetuses and in suckling lambs. Biochem J. 1977 Mar 15;162(3):617–626. doi: 10.1042/bj1620617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yeung D., Oliver I. T. Factors affecting the premature induction of phosphopyruvate carboxylase in neonatal rat liver. Biochem J. 1968 Jun;108(2):325–331. doi: 10.1042/bj1080325. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES