Algorithm 1.
Showcasing the Major Working Steps of RDKVT.
1: Inputs: Dataset, |
2: Outputs: Classify whether the thyroid is affected or not |
3: D(a) ← D.drop ([T BG], axis = columns) |
4: D(b) ← MedianImpute {} |
5: D(c) ← LabelEncoder {} |
6: D(d) ← SMOTEENN {} |
7: ← input {(N × M matrix)}, output (N × 1 vector) |
8: ← TrainTestSplit () |
9: ← TrainTestSplit () |
10: ← TrainTestSplit () |
11: while (execute − different − TrainTestSets) do |
12: ← RandomForest () |
13: ← DecisionTree () |
14: ← KNearestNeighbors () |
15: end while |
16: procedure RDKVT () |
17: RDKVT ← argmax () |
18: while (fitting – different − TrainTestSets) |
19: RDKVT ← RDKVT.fit () |
20: end while |
21: Result ← RDKVT. predict (New−sample) |
22: ReturnResult |