Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1977 May 1;163(2):229–239. doi: 10.1042/bj1630229

Chemical and physical characterization of a phosphoprotein, Protein C, from human saliva and comparison with a related protein A.

A Bennick
PMCID: PMC1164688  PMID: 869925

Abstract

The isolation of a highly purified phosphoprotein, previously named protein C, from human parotid saliva is described. A chemical and physical characterization of protein C was undertaken and the properties of protein C were compared with those of a related protein A. The content of glycine, proline and dicarboxylicamino acids accounts for 83% of the total resideus of protein C and it contains 2.0 mol of P/mol of protein, most likely as phosphoserine. The protein also contains 1.2% glucose, but no hexosamine. The N-terminus is blocked and the proposed C-terminal sequence is -Ser(Gly, Pro)Gln. The molecular weight determined from ultracentrifugation is 16300. Circular dichroism and nuclear magnetic resonance fail to demonstrate the presence of polyproline structure, and there are no conformational changes under a variety of conditions. With specific antisera to protein C the protein can be detected in submandibular as well as in parotid saliva, but there is only reaction of partial identity of proteins A and C. It is proposed that at least part of the difference between proteins A and C is due to the presence of an additional length of peptide at the C-terminus of protein C.

Full text

PDF
229

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azen E. A., Denniston C. L. Genetic polymorphism of human salivary proline-rich proteins: further genetic analysis. Biochem Genet. 1974 Aug;12(2):109–120. doi: 10.1007/BF00487820. [DOI] [PubMed] [Google Scholar]
  2. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  3. Bennick A. Chemical and physical characteristics of a phosphoprotein from human parotid saliva. Biochem J. 1975 Mar;145(3):557–567. doi: 10.1042/bj1450557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bennick A., Connell G. E. Purification and partial characterization of four proteins from human parotid saliva. Biochem J. 1971 Jul;123(3):455–464. doi: 10.1042/bj1230455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bennick A. The binding of calcium to a salivary phosphoprotein, protein A, common to human parotid and submandibular secretions. Biochem J. 1976 Apr 1;155(1):163–169. doi: 10.1042/bj1550163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bennick A. The binding of calcium to a salivary phosphoprotein, protein C, and comparison with calcium binding to protein A, a related salivary phosphoprotein. Biochem J. 1977 May 1;163(2):241–245. doi: 10.1042/bj1630241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chrambach A., Reisfeld R. A., Wyckoff M., Zaccari J. A procedure for rapid and sensitive staining of protein fractionated by polyacrylamide gel electrophoresis. Anal Biochem. 1967 Jul;20(1):150–154. doi: 10.1016/0003-2697(67)90272-2. [DOI] [PubMed] [Google Scholar]
  8. GAREN A., LEVINTHAL C. A fine-structure genetic and chemical study of the enzyme alkaline phosphatase of E. coli. I. Purification and characterization of alkaline phosphatase. Biochim Biophys Acta. 1960 Mar 11;38:470–483. doi: 10.1016/0006-3002(60)91282-8. [DOI] [PubMed] [Google Scholar]
  9. Hay D. I., Oppenheim F. G. The isolation from human parotid saliva of a further group of proline-rich proteins. Arch Oral Biol. 1974 Aug;19(8):627–632. doi: 10.1016/0003-9969(74)90130-7. [DOI] [PubMed] [Google Scholar]
  10. Horwitz J., Strickland E. H., Billups C. Analysis of vibrational structure in the near-ultraviolet circular dichroism and absorption spectra of phenylalanine and its derivatives. J Am Chem Soc. 1969 Jan 1;91(1):184–190. doi: 10.1021/ja01029a034. [DOI] [PubMed] [Google Scholar]
  11. Jones S. R., Hofmann T. Penicillocarboxypeptidase-S, a nonspecific SH-dependent exopeptidase. Can J Biochem. 1972 Dec;50(12):1297–1310. doi: 10.1139/o72-175. [DOI] [PubMed] [Google Scholar]
  12. Keller P. J., Robinovitch M., Iversen J., Kauffman D. L. The protein composition of rat parotid saliva and secretory granules. Biochim Biophys Acta. 1975 Feb 27;379(2):562–570. doi: 10.1016/0005-2795(75)90162-2. [DOI] [PubMed] [Google Scholar]
  13. Levine M. J., Ellison S. A., Bahl O. P. The isolation from human parotid saliva and partial characterization of the protein core of a major parotid glycoprotein. Arch Oral Biol. 1973 Jul;18(7):827–837. doi: 10.1016/0003-9969(73)90053-8. [DOI] [PubMed] [Google Scholar]
  14. Madison V., Schellman J. Location of proline derivatives in conformational space. II. Theoretical optical activity. Biopolymers. 1970;9(5):569–588. doi: 10.1002/bip.1970.360090503. [DOI] [PubMed] [Google Scholar]
  15. Magnusson S., Sottrup-Jensen L., Petersen T. E., Morris H. R., Dell A. Primary structure of the vitamin K-dependent part of prothrombin. FEBS Lett. 1974 Aug 25;44(2):189–193. doi: 10.1016/0014-5793(74)80723-4. [DOI] [PubMed] [Google Scholar]
  16. Matsubara H., Sasaki R. M. High recovery of tryptophan from acid hydrolysates of proteins. Biochem Biophys Res Commun. 1969 Apr 29;35(2):175–181. doi: 10.1016/0006-291x(69)90263-0. [DOI] [PubMed] [Google Scholar]
  17. McDonald C. C., Phillips W. D. Proton magnetic resonance spectra of proteins in random-coil configurations. J Am Chem Soc. 1969 Mar 12;91(6):1513–1521. doi: 10.1021/ja01034a039. [DOI] [PubMed] [Google Scholar]
  18. Nelsestuen G. L., Zytkovicz T. H., Howard J. B. The mode of action of vitamin K. Identification of gamma-carboxyglutamic acid as a component of prothrombin. J Biol Chem. 1974 Oct 10;249(19):6347–6350. [PubMed] [Google Scholar]
  19. Oppenheim F. G., Hay D. I., Franzblau C. Proline-rich proteins from human parotid saliva. I. Isolation and partial characterization. Biochemistry. 1971 Nov;10(23):4233–4238. doi: 10.1021/bi00799a013. [DOI] [PubMed] [Google Scholar]
  20. Percy M. E., Buchwald B. M. A manual method of sequential Edman degradation followed by dansylation for the determination of protein sequences. Anal Biochem. 1972 Jan;45(1):60–67. doi: 10.1016/0003-2697(72)90007-3. [DOI] [PubMed] [Google Scholar]
  21. Price P. A., Otsuka A. A., Poser J. W., Kristaponis J., Raman N. Characterization of a gamma-carboxyglutamic acid-containing protein from bone. Proc Natl Acad Sci U S A. 1976 May;73(5):1447–1451. doi: 10.1073/pnas.73.5.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Robinovitch M. R., Keller P. J., Iversen J., Kauffman D. L. Demonstration of a class of proteins loosely associated with secretory granule membranes. Biochim Biophys Acta. 1975 Mar 13;382(2):260–24b. doi: 10.1016/0005-2736(75)90184-4. [DOI] [PubMed] [Google Scholar]
  23. SEIFTER S., DAYTON S. The estimation of glycogen with the anthrone reagent. Arch Biochem. 1950 Jan;25(1):191–200. [PubMed] [Google Scholar]
  24. Stenflo J., Fernlund P., Egan W., Roepstorff P. Vitamin K dependent modifications of glutamic acid residues in prothrombin. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2730–2733. doi: 10.1073/pnas.71.7.2730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wallach D., Kirshner N., Schramm M. Non-parallel transport of membrane proteins and content proteins during assembly of the secretory granule in rat parotid gland. Biochim Biophys Acta. 1975 Jan 14;375(1):87–105. doi: 10.1016/0005-2736(75)90074-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES