Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1977 Jun 1;163(3):433–439. doi: 10.1042/bj1630433

Rabbit tissue peptidases that hydrolyse the peptide hormone bradykinin. Differences in enzymic properties and concentration in rabbit tissues.

M A Cicilini, H Caldo, J D Berti, A C Camargo
PMCID: PMC1164722  PMID: 195573

Abstract

The distribution and properties of neutral peptidases acting on the peptide hormone bradykinin (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg) were determined in several rabbit tissues. The supernatant and particulate fractions prepared from tissue homogenates (25000g for 60min) were studied. Bradykinin inactivation (kininase activity) was measured by bioassay with the isolated guinea-pig ileum. The sites of peptide-bond cleavage were determined in the amino acid analyser, which permits detection and measurement of amino acids and peptides derived from bradykinin. The results indicate that kininases are present in a wide range of concentrations in different tissues, kidney and lung having the most activity. Kininases present in different tissues were distinguished on the basis of sensitivity to the effects of EDTA, dithiothreitol and ZnCl2 and by the site of peptide-bond hydrolysis in bradykinin.

Full text

PDF
433

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alonzo N., Hirs C. H. Automation of sample application in amino acid analyzers. Anal Biochem. 1968 May;23(2):272–288. doi: 10.1016/0003-2697(68)90359-x. [DOI] [PubMed] [Google Scholar]
  2. Caldwell P. R., Seegal B. C., Hsu K. C., Das M., Soffer R. L. Angiotensin-converting enzyme: vascular endothelial localization. Science. 1976 Mar 12;191(4231):1050–1051. doi: 10.1126/science.175444. [DOI] [PubMed] [Google Scholar]
  3. Camargo A. C., Ramalho-Pinto F. J., Greene L. J. Brain peptidases: conversion and inactivation of kinin hormones. J Neurochem. 1972 Jan;19(1):37–49. doi: 10.1111/j.1471-4159.1972.tb01251.x. [DOI] [PubMed] [Google Scholar]
  4. Camargo A. C., Shapanka R., Greene L. J. Preparation, assay, and partial characterization of a neutral endopeptidase from rabbit brain. Biochemistry. 1973 Apr 24;12(9):1838–1844. doi: 10.1021/bi00733a028. [DOI] [PubMed] [Google Scholar]
  5. Campbell B. J., Lin Y. C., Davis R. V., Ballew E. The purification and properties of a particulate renal dipeptidase. Biochim Biophys Acta. 1966 May 5;118(2):371–386. doi: 10.1016/s0926-6593(66)80046-2. [DOI] [PubMed] [Google Scholar]
  6. Coates P. M., Mestriner M. A., Hopkinson D. A. A preliminary genetic interpretation of the esterase isozymes of human tissues. Ann Hum Genet. 1975 Jul;39(1):1–20. doi: 10.1111/j.1469-1809.1975.tb00103.x. [DOI] [PubMed] [Google Scholar]
  7. Cushman D. W., Cheung H. S. Concentrations of angiotensin-converting enzyme in tissues of the rat. Biochim Biophys Acta. 1971 Oct;250(1):261–265. doi: 10.1016/0005-2744(71)90142-2. [DOI] [PubMed] [Google Scholar]
  8. ERDOS E. G., SLOANE E. M. An enzyme in human blood plasma that inactivates bradykinin and kallidins. Biochem Pharmacol. 1962 Jul;11:585–592. doi: 10.1016/0006-2952(62)90119-3. [DOI] [PubMed] [Google Scholar]
  9. Greene L. J., Camargo A. C., Krieger E. M., Stewart J. M., Ferreira S. H. Inhibition of the conversion of angiotensin I to II and potentiation of bradykinin by small peptides present in Bothrops jararaca venom. Circ Res. 1972 Sep;31(9 Suppl):62–71. [PubMed] [Google Scholar]
  10. Hayman S., Patterson E. K. Purification and properties of a mouse ascites tumor dipeptidase, a metalloenzyme. J Biol Chem. 1971 Feb 10;246(3):660–669. [PubMed] [Google Scholar]
  11. Katzen H. M. The multiple forms of mammalian hexokinase and their significance to the action of insulin. Adv Enzyme Regul. 1967;5:335–356. doi: 10.1016/0065-2571(67)90025-8. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Oliveira E. B., Martins A. R., Camargo A. C. Isolation of brain endopeptidases: influence of size and sequence of substrates structurally related to bradykinin. Biochemistry. 1976 May 4;15(9):1967–1974. doi: 10.1021/bi00654a026. [DOI] [PubMed] [Google Scholar]
  14. Rapley S., Lewis W. H., Harris H. Tissue distributions, substrate specificities and molecular sizes of human peptidases determined by separate gene loci. Ann Hum Genet. 1971 Feb;34(3):307–320. doi: 10.1111/j.1469-1809.1971.tb00243.x. [DOI] [PubMed] [Google Scholar]
  15. Ryan J. W., Ryan U. S., Schultz D. R., Whitaker C., Chung A. Subcellular localization of pulmonary antiotensin-converting enzyme (kininase II). Biochem J. 1975 Feb;146(2):497–499. doi: 10.1042/bj1460497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Suzuki K., Abinko T., Endo N., Kameyama T., Sasaki K. Biologically active synthetic fragments of bradykinin. Jpn J Pharmacol. 1969 Jun;19(2):325–327. doi: 10.1254/jjp.19.325. [DOI] [PubMed] [Google Scholar]
  17. Yang H. Y., Erdös E. G., Levin Y. Characterization of a dipeptide hydrolase (kininase II: angiotensin I converting enzyme). J Pharmacol Exp Ther. 1971 Apr;177(1):291–300. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES