Abstract
Allophycocyanin from the unicellular rhodophyte Cyanidium caldarium was purified by (NH4)2SO4 fractionation and ion-exchange chromatography on brushite (calcium phosphate) columns and on DEAE-Sephadex A-25 columns. The specific absorption coefficient (A0.1%1cm) at 650nm of purified allophycocyanin was 6.35 in 0.05M-potassium phosphate buffer, pH7.0. Absorption maxima of allophycocyanin occurred at 650, 618 (shoulder), 350 and 275 nm. Circular-dichroic spectra displayed positive-ellipticity bands at 658 and 630 nm and a major negative-ellipticity band at 340nm. Computer analysis of the circular-dichroic spectrum of allophycocyanin from 207 to 243 nm indicated 42% alpha-helix and 58% beta-form. The estimated molecular weight of purified allophycocyanin on calibrated Sephadex G-200 columns at pH7.0. was 196000. Electrophoretic examination of allophycocyanin on sodium dodecyl sulphate/polyacrylamide gels revealed a single band with apparent mol.wt. 16000. The presence of two polypeptide subunits, with nearly the same molecular weight, was revealed on polyacrylamide gels by using a modified electrophoresis buffer. Spectral analysis of the allophycocyanin subunits resolved by ion-exchange chromatography on Bio-Rex 70 columns indicated that a single phycocyanobilin chromophore was present on each polypeptide chain. Treatment of allophycocyanin with 8M-urea (pH3.0) and subsequent removal of urea by dialysis against water yielded a derivative phycobiliprotein with spectroscopic characteristics similar to those of phycocyanin. The original allophycocyanin spectrum was regenerated after incubation in phosphate buffer, pH7.0. Automated sequences analysis of the N-terminus of allophycocyanin showed that (a) the sequences of the two subunits were different from one another and were different from the subunits of phycocyanin from the same alga, (b) the subunits occurred in a molar ratio of 1:1 and (c) the sequences homology at the N-terminus among alpha- and beta-subunits of allophycocyanin from blue-green and red algae approached 90%.
Full text
PDF










Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALLEN M. B. Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte. Arch Mikrobiol. 1959;32(3):270–277. doi: 10.1007/BF00409348. [DOI] [PubMed] [Google Scholar]
- Andrews P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J. 1965 Sep;96(3):595–606. doi: 10.1042/bj0960595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett A., Bogorad L. Properties of subunits and aggregates of blue-green algal biliproteins. Biochemistry. 1971 Sep 14;10(19):3625–3634. doi: 10.1021/bi00795a022. [DOI] [PubMed] [Google Scholar]
- Brown A. S., Foster J. A., Voynow P. V., Franzblau C., Troxler R. F. Allophycocyanin from the filamentous cyanophyte, Phormidium luridum. Biochemistry. 1975 Aug 12;14(16):3581–3588. doi: 10.1021/bi00687a011. [DOI] [PubMed] [Google Scholar]
- Chapman D. J., Cole W. J., Siegelman H. W. Chromophores of allophycocyanin and R-phycocyanin. Biochem J. 1967 Dec;105(3):903–905. doi: 10.1042/bj1050903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen Y. H., Yang J. T., Martinez H. M. Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry. 1972 Oct 24;11(22):4120–4131. doi: 10.1021/bi00772a015. [DOI] [PubMed] [Google Scholar]
- Craig I. W., Carr N. G. C-phycocyanin and allophycocyanin in two species of blue-green algae. Biochem J. 1968 Jan;106(2):361–366. doi: 10.1042/bj1060361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diakoff S., Scheibe J. Action Spectra for Chromatic Adaptation in Tolypothrix tenuis. Plant Physiol. 1973 Feb;51(2):382–385. doi: 10.1104/pp.51.2.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edman P., Begg G. A protein sequenator. Eur J Biochem. 1967 Mar;1(1):80–91. doi: 10.1007/978-3-662-25813-2_14. [DOI] [PubMed] [Google Scholar]
- Erokhina L. G., Krasnovskii A. A. Issledovanie spektral'nykh i fotokhimicheskikh effektovdenaturatsii allofikotsianina sinezelenykh vodoroslei. Mol Biol. 1974 Sep-Oct;8(5):651–659. [PubMed] [Google Scholar]
- Foster J. A., Bruenger E., Gray W. R., Sandberg L. B. Isolation and amino acid sequences of tropoelastin peptides. J Biol Chem. 1973 Apr 25;248(8):2876–2879. [PubMed] [Google Scholar]
- Gantt E., Conti S. F. Granules associated with the chloroplast lamellae of Porphyridium cruentum. J Cell Biol. 1966 Jun;29(3):423–434. doi: 10.1083/jcb.29.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gantt E., Lipschultz C. A. Energy transfer in phycobilisomes from phycoerythrin to allophycocyanin. Biochim Biophys Acta. 1973 Apr 5;292(3):858–861. doi: 10.1016/0005-2728(73)90036-4. [DOI] [PubMed] [Google Scholar]
- Gantt E., Lipschultz C. A. Phycobilisomes of Porphyridium cruentum: pigment analysis. Biochemistry. 1974 Jul 2;13(14):2960–2966. doi: 10.1021/bi00711a027. [DOI] [PubMed] [Google Scholar]
- Gantt E., Lipschultz C. A., Zilinskas B. Further evidence for a phycobilisome model from selective dissociation, fluorescence emission, immunoprecipitation, and electron microscopy. Biochim Biophys Acta. 1976 May 14;430(2):375–388. doi: 10.1016/0005-2728(76)90093-1. [DOI] [PubMed] [Google Scholar]
- Glazer A. N., Apell G. S., Hixson C. S., Bryant D. A., Rimon S., Brown D. M. Biliproteins of cyanobacteria and Rhodophyta: Homologous family of photosynthetic accessory pigments. Proc Natl Acad Sci U S A. 1976 Feb;73(2):428–431. doi: 10.1073/pnas.73.2.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glazer A. N., Cohen-Bazire G. Subunit structure of the phycobiliproteins of blue-green algae. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1398–1401. doi: 10.1073/pnas.68.7.1398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glazer A. N., Fang S. Chromophore content of blue-green algal phycobiliproteins. J Biol Chem. 1973 Jan 25;248(2):659–662. [PubMed] [Google Scholar]
- Gray B. H., Gantt E. Spectral properties of phycobilisomes and phycobiliproteins from the blue-green alga-nostoc sp. Photochem Photobiol. 1975 Feb;21(2):121–128. doi: 10.1111/j.1751-1097.1975.tb06638.x. [DOI] [PubMed] [Google Scholar]
- Gysi J., Zuber H. Isolation and characterization of allophycocyanin II from the thermophilic blue-green alga Mastigocladus laminosus Cohn. FEBS Lett. 1974 Nov 15;48(2):209–213. doi: 10.1016/0014-5793(74)80469-2. [DOI] [PubMed] [Google Scholar]
- HAXO F., O'HEOCHA C., NORRIS P. Comparative studies of chromatographically separated phycoerythrins and phycocyanins. Arch Biochem Biophys. 1955 Jan;54(1):162–173. doi: 10.1016/0003-9861(55)90019-9. [DOI] [PubMed] [Google Scholar]
- Harris J. U., Berns D. S. Letter: Sequences of the N-terminus portions of biliproteins. J Mol Evol. 1975 Jul 11;5(2):153–163. doi: 10.1007/BF01732519. [DOI] [PubMed] [Google Scholar]
- Lazaroff N., Schiff J. Action Spectrum for Developmental Photo-Induction of the Blue-Green Alga Nostoc muscorum. Science. 1962 Aug 24;137(3530):603–604. doi: 10.1126/science.137.3530.603. [DOI] [PubMed] [Google Scholar]
- Lemasson C., Marsac N. T., Cohen-Bazire G. Role of allophycocyanin as light-harvesting pigment in cyanobacteria. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3130–3133. doi: 10.1073/pnas.70.11.3130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MERCER F. V., BOGORAD L., MULLENS R. Studies with Cyanidium caldarium. I. The fine structure and systematic position of the organism. J Cell Biol. 1962 Jun;13:393–403. doi: 10.1083/jcb.13.3.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacColl R., Edwards M. R., Mulks M. H., Berns D. S. Comparison of the biliproteins from two strains of the thermophilic cyanophyte Synechococcus lividus. Biochem J. 1974 Aug;141(2):419–425. doi: 10.1042/bj1410419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mendez E., Lai C. Y. Regeneration of amino acids from thiazolinones formed in the Edman degradation. Anal Biochem. 1975 Sep;68(1):47–53. doi: 10.1016/0003-2697(75)90677-6. [DOI] [PubMed] [Google Scholar]
- Pisano J. J., Bronzert T. J. Analysis of amino acid phenylthiohydantoins by gas chromatography. J Biol Chem. 1969 Oct 25;244(20):5597–5607. [PubMed] [Google Scholar]
- Rice H. V., Briggs W. R. Partial characterization of oat and rye phytochrome. Plant Physiol. 1973 May;51(5):927–938. doi: 10.1104/pp.51.5.927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SIEGELMAN H. W., FIRER E. M. PURIFICATION OF PHYTOCHROME FROM OAT SEEDLINGS. Biochemistry. 1964 Mar;3:418–423. doi: 10.1021/bi00891a019. [DOI] [PubMed] [Google Scholar]
- Scheibe J. Photoreversible pigment: occurrence in a blue-green alga. Science. 1972 Jun 2;176(4038):1037–1039. doi: 10.1126/science.176.4038.1037. [DOI] [PubMed] [Google Scholar]
- Smithies O., Gibson D., Fanning E. M., Goodfliesh R. M., Gilman J. G., Ballantyne D. L. Quantitative procedures for use with the Edman-Begg sequenator. Partial sequences of two unusual immunoglobulin light chains, Rzf and Sac. Biochemistry. 1971 Dec 21;10(26):4912–4921. doi: 10.1021/bi00802a013. [DOI] [PubMed] [Google Scholar]
- Troxler R. F., Bogorad L. Studies on the formation of phycocyanin, porphyrins, and a blue phycobilin by wild-type and mutant strains of Cyanidium caldarium. Plant Physiol. 1966 Mar;41(3):491–499. doi: 10.1104/pp.41.3.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Troxler R. F., Foster J. A., Brown A. S., Franzblau C. The alpha and beta subunits of Cyanidium caldarium phycocyanin: properties and amino acid sequences at the amino terminus. Biochemistry. 1975 Jan 28;14(2):268–274. doi: 10.1021/bi00673a012. [DOI] [PubMed] [Google Scholar]
- Troxler R. F., Lester R. Biosynthesis of phycocyanobilin. Biochemistry. 1967 Dec;6(12):3840–3846. doi: 10.1021/bi00864a030. [DOI] [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]


