Abstract
1. The activities of 2-oxoglutarate dehydrogenase (EC 1.2.4.2) were measured in hearts and mammary glands of rats, mice, rabbits, guinea pigs, cows, sheep, goats and in the flight muscles of several Hymenoptera. 2. The activity of 2-oxoglutarate dehydrogenase was similar to the maximum flux through the tricarboxylic acid cycle in vivo. Therefore measuring the activity of this enzyme may provide a simple method for estimating the maximum flux through the cycle for comparative investigations. 3. The activities of pyruvate dehydrogenase (EC 1.2.4.1) in mammalian hearts were similar to those of 2-oxoglutarate dehydrogenase, suggesting that in these tissues the tricarboxylic acid cycle can be supplied (under some conditions) by acetyl-CoA derived from pyruvate alone. 4. In the lactating mammary glands of the rat and mouse, the activities of pyruvate dehydrogenase exceeded those of 2-oxoglutarate dehydrogenase, reflecting a flux of pyruvate to acetyl-CoA for fatty acid synthesis in addition to that of oxidation via the tricarboxylic acid cycle. In ruminant mammary glands the activities of pyruvate dehydrogenase were similar to those of 2-oxoglutarate dehydrogenase, reflecting the absence of a significant flux of pyruvate to fatty acids in these tissues.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alp P. R., Newsholme E. A., Zammit V. A. Activities of citrate synthase and NAD+-linked and NADP+-linked isocitrate dehydrogenase in muscle from vertebrates and invertebrates. Biochem J. 1976 Mar 15;154(3):689–700. doi: 10.1042/bj1540689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baldwin K. M., Klinkerfuss G. H., Terjung R. L., Molé P. A., Holloszy J. O. Respiratory capacity of white, red, and intermediate muscle: adaptative response to exercise. Am J Physiol. 1972 Feb;222(2):373–378. doi: 10.1152/ajplegacy.1972.222.2.373. [DOI] [PubMed] [Google Scholar]
- Coore H. G., Denton R. M., Martin B. R., Randle P. J. Regulation of adipose tissue pyruvate dehydrogenase by insulin and other hormones. Biochem J. 1971 Nov;125(1):115–127. doi: 10.1042/bj1250115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coore H. G., Field B. Properties of pyruvate dehydrogenase of rat mammary tissue and its changes during pregnancy, lactation and weaning. Biochem J. 1974 Jul;142(1):87–95. doi: 10.1042/bj1420087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox G. F., Davies D. D. Nicotinamide-adenine dinucleotide-specific isocitrate dehydrogenase from pea mitochondria. Purification and properties. Biochem J. 1967 Nov;105(2):729–734. doi: 10.1042/bj1050729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crabtree B., Newsholme E. A. The activities of lipases and carnitine palmitoyltransferase in muscles from vertebrates and invertebrates. Biochem J. 1972 Dec;130(3):697–705. doi: 10.1042/bj1300697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crabtree B., Newsholme E. A. The activities of phosphorylase, hexokinase, phosphofructokinase, lactate dehydrogenase and the glycerol 3-phosphate dehydrogenases in muscles from vertebrates and invertebrates. Biochem J. 1972 Jan;126(1):49–58. doi: 10.1042/bj1260049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gumaa K. A., Greenbaum A. L., McLean P. Adaptive changes in satellite systems related to lipogenesis in rat and sheep mammary gland and in adipose tissue. Eur J Biochem. 1973 Apr 2;34(1):188–198. doi: 10.1111/j.1432-1033.1973.tb02745.x. [DOI] [PubMed] [Google Scholar]
- Hansford R. G. The effect of adenine nucleotides upon the 2-oxoglutarate dehydrogenase of blowfly flight muscle. FEBS Lett. 1972 Mar 15;21(2):139–141. doi: 10.1016/0014-5793(72)80122-4. [DOI] [PubMed] [Google Scholar]
- Hardwick D. C. The fate of acetyl groups derived from glucose in the isolated perfused goat udder. Biochem J. 1966 Apr;99(1):228–231. doi: 10.1042/bj0990228. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holloszy J. O., Oscai L. B. Effect of exercise on alpha-glycerophosphate dehydrogenase activity in skeletal muscle. Arch Biochem Biophys. 1969 Mar;130(1):653–656. doi: 10.1016/0003-9861(69)90083-6. [DOI] [PubMed] [Google Scholar]
- Katz J., Wals P. A., Van de Velde R. L. Lipogenesis by acini from mammary gland of lactating rats. J Biol Chem. 1974 Nov 25;249(22):7348–7357. [PubMed] [Google Scholar]
- LINZELL J. L. Mammary-gland blood flow and oxygen, glucose and volatile fatty acid uptake in the conscious goat. J Physiol. 1960 Oct;153:492–509. doi: 10.1113/jphysiol.1960.sp006550. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neely J. R., Denton R. M., England P. J., Randle P. J. The effects of increased heart work on the tricarboxylate cycle and its interactions with glycolysis in the perfused rat heart. Biochem J. 1972 Jun;128(1):147–159. doi: 10.1042/bj1280147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Opie L. H., Newsholme E. A. The activities of fructose 1,6-diphosphatase, phosphofructokinase and phosphoenolpyruvate carboxykinase in white muscle and red muscle. Biochem J. 1967 May;103(2):391–399. doi: 10.1042/bj1030391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Randle P. J., Denton R. M., Pask H. T., Severson D. L. Calcium ions and the regulation of pyruvate dehydrogenase. Biochem Soc Symp. 1974;(39):75–88. [PubMed] [Google Scholar]
- Randle P. J., Garland P. B., Hales C. N., Newsholme E. A., Denton R. M., Pogson C. I. Interactions of metabolism and the physiological role of insulin. Recent Prog Horm Res. 1966;22:1–48. doi: 10.1016/b978-1-4831-9825-5.50004-x. [DOI] [PubMed] [Google Scholar]
- Smith G. H. Glucose metabolism in the ruminant. Proc Nutr Soc. 1971 Dec;30(3):265–272. doi: 10.1079/pns19710051. [DOI] [PubMed] [Google Scholar]
- Strong C. R., Dils R. Fatty acids synthesized by mammary gland slices from lactating guinea pig and rabbit. Comp Biochem Physiol B. 1972 Nov 15;43(3):643–652. doi: 10.1016/0305-0491(72)90149-6. [DOI] [PubMed] [Google Scholar]
- TABOR H., MEHLER A. H., STADTMAN E. R. The enzymatic acetylation of amines. J Biol Chem. 1953 Sep;204(1):127–138. [PubMed] [Google Scholar]
- Whitehouse S., Cooper R. H., Randle P. J. Mechanism of activation of pyruvate dehydrogenase by dichloroacetate and other halogenated carboxylic acids. Biochem J. 1974 Sep;141(3):761–774. doi: 10.1042/bj1410761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whitehouse S., Randle P. J. Activation of pyruvate dehydrogenase in perfused rat heart by dichloroacetate (Short Communication). Biochem J. 1973 Jun;134(2):651–653. doi: 10.1042/bj1340651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wieland O. H., Siess E. A., Weiss L., Löffler G., Patzelt C., Portenhauser R., Hartmann U., Schirmann A. Regulation of the mammalian pyruvate dehydrogenase complex by covalent modification. Symp Soc Exp Biol. 1973;27:371–400. [PubMed] [Google Scholar]
- Williamson J. R., Safer B., LaNoue K. F., Smith C. M., Walajtys E. Mitochondrial-cytosolic interactions in cardiac tissue: role of the malate-aspartate cycle in the removal of glycolytic NADH from the cytosol. Symp Soc Exp Biol. 1973;27:241–281. [PubMed] [Google Scholar]