Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1977 May 15;164(2):363–369. doi: 10.1042/bj1640363

Effect of a nutritional shift on the degradation of abnormal proteins in the mouse liver. Decreased degradation during rapid liver growth.

R Amils, R D Conde, O A Scornik
PMCID: PMC1164801  PMID: 880243

Abstract

1. The intravenous injection of puromycin to mice 0.5 min after administration of radioactive leucine resulted in the release of labelled ribosome-bound nascent protein chains with the next 0.5 min. 2. During the subsequent 13 min, 40% of the liver protein radioactivity disappeared. The rate of this process was already maximal 0.5 min after the injection of puromycin, with no apparent lag. 3. Evidence is presented that this phenomenon represents the selective degradation of puromycinyl-peptides: (a) the magnitude of this fraction corresponded to the calculated proportion of protein radioactivity in nascent chains at the time of the puromycin effect; (b) the size distribution of the proteins disappearing between 2 and 14 min was smaller than that of those retained at 14 min; and (c) when the injection of puromycin was delayed for 5 min, or when the leucine pulse was interrupted by the injection of cycloheximide (rather than puromycin), the fraction disappearing within 14 min was much smaller. 4. The degradation of puromycinyl-peptides was much slower in the rapidly growing livers of animals recovering from a protein depletion than in the protein-depleted controls. It is concluded that the large decrease in the overall rates of total liver protein degradation previously described during liver growth is a general phenomenon, also affecting the rate of scavenging of abnormal proteins.

Full text

PDF
363

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLEN D. W., ZAMECNIK P. C. The effect of puromycin on rabbit reticulocyte ribosomes. Biochim Biophys Acta. 1962 Jun 11;55:865–874. doi: 10.1016/0006-3002(62)90899-5. [DOI] [PubMed] [Google Scholar]
  2. Adams J. G., 3rd, Winter W. P., Rucknagel D. L., Spencer H. H. Biosynthesis of hemoglobin Ann Arbor: evidence for catabolic and feedback regulation. Science. 1972 Jun 30;176(4042):1427–1429. doi: 10.1126/science.176.4042.1427. [DOI] [PubMed] [Google Scholar]
  3. Baglioni C., Colombo B., Jacobs-Lorena M. Chain termination: a test for a possible explanation of thalassemia. Ann N Y Acad Sci. 1969 Nov 20;165(1):212–220. doi: 10.1111/j.1749-6632.1969.tb27791.x. [DOI] [PubMed] [Google Scholar]
  4. Bradley M. O., Hayflick L., Schimke R. T. Protein degradation in human fibroblasts (WI-38). Effects of aging, viral transformation, and amino acid analogs. J Biol Chem. 1976 Jun 25;251(12):3521–3529. [PubMed] [Google Scholar]
  5. Bukhari A. I., Zipser D. Mutants of Escherichia coli with a defect in the degradation of nonsense fragments. Nat New Biol. 1973 Jun 20;243(129):238–241. doi: 10.1038/newbio243238a0. [DOI] [PubMed] [Google Scholar]
  6. Capecchi M. R., Capecchi N. E., Hughes S. H., Wahl G. M. Selective degradation of abnormal proteins in mammalian tissue culture cells. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4732–4736. doi: 10.1073/pnas.71.12.4732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Conde R. D., Scornik O. A. Role of protein degradation in the growth of livers after a nutritional shift. Biochem J. 1976 Aug 15;158(2):385–390. doi: 10.1042/bj1580385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. De Duve C., Wattiaux R. Functions of lysosomes. Annu Rev Physiol. 1966;28:435–492. doi: 10.1146/annurev.ph.28.030166.002251. [DOI] [PubMed] [Google Scholar]
  9. Dean R. T. Concerning a possible mechanism for selective capture of cytoplasmic proteins by lysosomes. Biochem Biophys Res Commun. 1975 Nov 17;67(2):604–609. doi: 10.1016/0006-291x(75)90855-4. [DOI] [PubMed] [Google Scholar]
  10. Goldberg A. L. Degradation of abnormal proteins in Escherichia coli (protein breakdown-protein structure-mistranslation-amino acid analogs-puromycin). Proc Natl Acad Sci U S A. 1972 Feb;69(2):422–426. doi: 10.1073/pnas.69.2.422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goldberg A. L., St John A. C. Intracellular protein degradation in mammalian and bacterial cells: Part 2. Annu Rev Biochem. 1976;45:747–803. doi: 10.1146/annurev.bi.45.070176.003531. [DOI] [PubMed] [Google Scholar]
  12. Goldschmidt R. In vivo degradation of nonsense fragments in E. coli. Nature. 1970 Dec 19;228(5277):1151–1154. doi: 10.1038/2281151a0. [DOI] [PubMed] [Google Scholar]
  13. Hayashi M., Hiroi Y., Natori Y. Effect of ATP on protein degradation in rat liver lysosomes. Nat New Biol. 1973 Apr 11;242(119):163–166. doi: 10.1038/newbio242163a0. [DOI] [PubMed] [Google Scholar]
  14. Hayashi M., Natori Y. Molecular-size-dependent degradation of liver cytosolic proteins in vitro. J Biochem. 1976 Jan;79(1):221–224. doi: 10.1093/oxfordjournals.jbchem.a131050. [DOI] [PubMed] [Google Scholar]
  15. Hendil K. B. Degradation of abnormal proteins in HeLa cells. J Cell Physiol. 1976 Mar;87(3):289–296. doi: 10.1002/jcp.1040870304. [DOI] [PubMed] [Google Scholar]
  16. Kanai Y., Sugimura T., Matsushima T., Kawamura A. Studies on in vivo degradation of rat hepatic catalase with or without modification by 3-amino-1,2,4-triazole. J Biol Chem. 1974 Oct 25;249(20):6505–6511. [PubMed] [Google Scholar]
  17. Kemshead J. T., Hipkiss A. R. Degradation of abnormal proteins in Escherichia coli: relative susceptibility of canavanyl proteins and puromycin peptides to proteolysis in vitro. Eur J Biochem. 1974 Jun 15;45(2):535–540. doi: 10.1111/j.1432-1033.1974.tb03578.x. [DOI] [PubMed] [Google Scholar]
  18. Knowles S. E., Ballard F. J. Selective control of the degradation of normal and aberrant proteins in Reuber H35 hepatoma cells. Biochem J. 1976 Jun 15;156(3):609–617. doi: 10.1042/bj1560609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Knowles S. E., Gunn J. M., Hanson R. W., Ballard F. J. Increased degradation rates of protein synthesized in hepatoma cells in the presence of amino acid analogues. Biochem J. 1975 Mar;146(3):595–600. doi: 10.1042/bj1460595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kuehl W. M., Scharff M. D. Synthesis of a carboxyl-terminal (constant region) fragment of the immunoglobulin light chain by a mouse myeloma cell line. J Mol Biol. 1974 Nov 5;89(3):409–421. doi: 10.1016/0022-2836(74)90472-0. [DOI] [PubMed] [Google Scholar]
  21. Lin S., Zabin I. Beta-galactosidase. Rates of synthesis and degradation of incomplete chains. J Biol Chem. 1972 Apr 10;247(7):2205–2211. [PubMed] [Google Scholar]
  22. MORRIS A., ARLIGHAUS R., FAVELUKES S., SCHWEET R. INHIBITION OF HEMOGLOBIN SYNTHESIS BY PUROMYCIN. Biochemistry. 1963 Sep-Oct;2:1084–1090. doi: 10.1021/bi00905a030. [DOI] [PubMed] [Google Scholar]
  23. McIlhinney A., Hogan B. L. Rapid degradation of puromycyl peptides in hepatoma cells and reticulocytes. FEBS Lett. 1974 Apr 1;40(2):297–301. doi: 10.1016/0014-5793(74)80248-6. [DOI] [PubMed] [Google Scholar]
  24. Pine M. J. Response of intracellular proteolysis to alteration of bacterial protein and the implications in metabolic regulation. J Bacteriol. 1967 May;93(5):1527–1533. doi: 10.1128/jb.93.5.1527-1533.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Platt T., Miller J. H., Weber K. In vivo degradation of mutant lac repressor. Nature. 1970 Dec 19;228(5277):1154–1156. doi: 10.1038/2281154a0. [DOI] [PubMed] [Google Scholar]
  26. Prouty W. F. Degradation of abnormal proteins in HeLa cells. J Cell Physiol. 1976 Jul;88(3):371–382. doi: 10.1002/jcp.1040880313. [DOI] [PubMed] [Google Scholar]
  27. RABINOVITZ M., FISHER J. M. CHARACTERISTICS OF THE INHIBITION OF HEMOGLOBIN SYNTHESIS IN RABBIT RETICULOCYTES BY THREO-ALPHA-AMINO-BETA-CHLOROBUTYRIC ACID. Biochim Biophys Acta. 1964 Oct 16;91:313–322. doi: 10.1016/0926-6550(64)90255-5. [DOI] [PubMed] [Google Scholar]
  28. Scornik O. A., Botbol V. Role of changes in protein degradation in the growth of regenerating livers. J Biol Chem. 1976 May 25;251(10):2891–2897. [PubMed] [Google Scholar]
  29. Scornik O. A. In vivo rate of translation by ribosomes of normal and regenerating liver. J Biol Chem. 1974 Jun 25;249(12):3876–3883. [PubMed] [Google Scholar]
  30. Scornik O. A. In vivo rates of deaggregation of polyribosomes in normal and regenerating liver after the injection of pactamycin. Biochim Biophys Acta. 1974 Nov 20;374(1):76–81. doi: 10.1016/0005-2787(74)90200-7. [DOI] [PubMed] [Google Scholar]
  31. Siekevitz P. The turnover of proteins and the usage of information. J Theor Biol. 1972 Nov;37(2):321–334. doi: 10.1016/0022-5193(72)90026-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES