Abstract
1. It is shown that the electron-transfer inhibitor thenoyltrifluoroacetone abolishes a respiratory-chain electron-paramagnetic-resonance absorbance due to spin-spin interactions of ubisemiquinones at concentrations similar to those required for inhibition of succinate oxidation. 2. A specific site of interaction of thenoyltrifluoroacetone with the respiratory chain is proposed to be on the ubisemiquinone with which succinate dehydrogenase reacts. 3. Our results further demonstrate the close association of the HiPIP (high-potential iron-sulphur) centre of succinate dehydrogenase with ubisemiquinone.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baginsky M. L., Hatefi Y. Reconstitution of succinate-coenzyme Q reductase (complex II) and succinate oxidase activities by a highly purified, reactivated succinate dehydrogenase. J Biol Chem. 1969 Oct 10;244(19):5313–5319. [PubMed] [Google Scholar]
- Dutton P. L. Oxidation-reduction potential dependence of the interaction of cytochromes, bacteriochlorophyll and carotenoids at 77 degrees K in chromatophores of Chromatium D and Rhodopseudomonas gelatinosa. Biochim Biophys Acta. 1971 Jan 12;226(1):63–80. doi: 10.1016/0005-2728(71)90178-2. [DOI] [PubMed] [Google Scholar]
- Ingledew W. J., Ohnishi T. Properties of the S-3 iron-sulphur centre of succinate dehydrogenase in the intact respiratory chain of beef heart mitochondria. FEBS Lett. 1975 Jun 15;54(2):167–171. doi: 10.1016/0014-5793(75)80067-6. [DOI] [PubMed] [Google Scholar]
- Ingledew W. J., Salerno J. C., Ohnishi T. Studies on electron paramagnetic resonance spectra manifested by a respiratory chain hydrogen carrier. Arch Biochem Biophys. 1976 Nov;177(1):176–184. doi: 10.1016/0003-9861(76)90427-6. [DOI] [PubMed] [Google Scholar]
- King T. E. Reconstitution of the respiratory chain. Adv Enzymol Relat Areas Mol Biol. 1966;28:155–236. doi: 10.1002/9780470122730.ch3. [DOI] [PubMed] [Google Scholar]
- Kröger A., Klingenberg M. The kinetics of the redox reactions of ubiquinone related to the electron-transport activity in the respiratory chain. Eur J Biochem. 1973 Apr;34(2):358–368. doi: 10.1111/j.1432-1033.1973.tb02767.x. [DOI] [PubMed] [Google Scholar]
- Lindsay J. G., Dutton P. L., Wilson D. F. Energy-dependent effects on the oxidation-reduction midpoint potentials of the b and c cytochromes in phosphorylating submitochondrial particles from pigeon heart. Biochemistry. 1972 May 9;11(10):1937–1942. doi: 10.1021/bi00760a031. [DOI] [PubMed] [Google Scholar]
- Nelson B. D., Norling B., Persson B., Ernster L. Effect of thenoyltrifluoroacetone on the interaction of succinate dehydrogenase and cytochrome b in ubiquinone-depleted submitochondrial particles. Biochem Biophys Res Commun. 1971 Sep 17;44(6):1312–1320. doi: 10.1016/s0006-291x(71)80229-2. [DOI] [PubMed] [Google Scholar]
- Ohnishi T., Lim J., Winter D. B., King T. E. Thermodynamic and EPR characteristics of a HiPIP-type iron-sulfur center in the succinate dehydrogenase of the respiratory chain. J Biol Chem. 1976 Apr 10;251(7):2105–2109. [PubMed] [Google Scholar]
- Prince R. C., Dutton P. L. The primary acceptor of bacterial photosynthesis: its operating midpoint potential? Arch Biochem Biophys. 1976 Feb;172(2):329–334. doi: 10.1016/0003-9861(76)90084-9. [DOI] [PubMed] [Google Scholar]
- Rossi E., Norling B., Persson B., Ernster L. Studies with ubiquinone-depleted submitochondrial particles. Effects of extraction and reincorporation of ubiquinone on the kinetics of succinate dehydrogenase. Eur J Biochem. 1970 Nov;16(3):508–513. doi: 10.1111/j.1432-1033.1970.tb01110.x. [DOI] [PubMed] [Google Scholar]
- Ruzicka F. J., Beinert H., Schepler K. L., Dunham W. R., Sands R. H. Interaction of ubisemiquinone with a paramagnetic component in heart tissue. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2886–2890. doi: 10.1073/pnas.72.8.2886. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TAPPEL A. L. Inhibition of electron transport by antimycin A, alkyl hydroxy naphthoquinones and metal coordination compounds. Biochem Pharmacol. 1960 Jul;3:289–296. doi: 10.1016/0006-2952(60)90094-0. [DOI] [PubMed] [Google Scholar]