Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1977 Jul 1;165(1):1–9. doi: 10.1042/bj1650001

The covalent linkage of protein to carbohydrate in the extracellular protein-polysaccharide from the red alga Porphyridium cruentum.

J Heaney-Kieras, L Rodén, D J Chapman
PMCID: PMC1164861  PMID: 889565

Abstract

The extracellular anionic polysaccharide isolated from cultures of a unicellular red alga, Porphyridium cruentum, contains a small amount of protein after extensive purification. The polysaccharide and protein are recovered in the same fraction after isopycnic CsCl-density-gradient centrifugation in 4M-guanidinium chloride, under conditions designed to separate proteins from polysaccharide. The peptide portion of the protein-polysaccharide is released from the polysaccharide by alkali under conditions for beta-elimination. The released peptide is non-diffusible, but in can be separated from the polysaccharide by precipitation of the polysaccharide as the cetylpyridinium complex. Under conditions for beta-elimination of certain O-glycosidic carbohydrate-protein linkages, selective destruction of serine and threonine occurs. The addition of a reducing agent to the alkali mixture produces a selective increase in alanine and alpha-aminobutyric acid. Addition of a tritiated reducing agent to the alkali mixture produces radioactive alanine and alpha-aminobutyric acid, and xylitol as the only sugar alcohol. Similar results are obtained from glycopeptides isolated from partial acid hydrolysates. A macromolecular structure of the protein-polysaccharide is suggested by a comparison of the intrinsic viscosity of material before and after treatment with alkali and proteolytic enzymes.

Full text

PDF
1

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fiat A. M., Alais C., Jollès P. The amino-acid and carbohydrate sequences of a short glycopeptide isolated from bovine kappa-casein. Eur J Biochem. 1972 Jun 9;27(3):408–412. doi: 10.1111/j.1432-1033.1972.tb01852.x. [DOI] [PubMed] [Google Scholar]
  2. Gotelli I. B., Cleland R. Differences in the occurrence and distribution of hydroxyproline-proteins among the algae. Am J Bot. 1968 Sep;55(8):907–914. [PubMed] [Google Scholar]
  3. Greiling H., Vögele P., Kisters R., Ohlenbusch H. D. Uber eine Kohlenhydrat-Protein-Bindung in der beta-Fructofuranosidase. Hoppe Seylers Z Physiol Chem. 1969 Apr;350(4):517–518. [PubMed] [Google Scholar]
  4. Hascall V. C., Sajdera S. W. Proteinpolysaccharide complex from bovine nasal cartilage. The function of glycoprotein in the formation of aggregates. J Biol Chem. 1969 May 10;244(9):2384–2396. [PubMed] [Google Scholar]
  5. Heaney-Kieras J., Chapman D. J. Structural studies on the extracellular polysaccharide of the red alga, Porhyridium. Carbohydr Res. 1976 Dec;52:169–177. doi: 10.1016/s0008-6215(00)85957-1. [DOI] [PubMed] [Google Scholar]
  6. Helting T., Rodén L. The carbohydrate-protein linkage region of chondroitin 6-sulfate. Biochim Biophys Acta. 1968 Dec 23;170(2):301–308. doi: 10.1016/0304-4165(68)90010-x. [DOI] [PubMed] [Google Scholar]
  7. Isemura M., Ikenaka T. Beta-Elimination and sulfite addition reaction of chondroitin sulfate peptidoglycan and the peptide structure of the linkage region. Biochim Biophys Acta. 1975 Nov 10;411(1):11–21. doi: 10.1016/0304-4165(75)90280-9. [DOI] [PubMed] [Google Scholar]
  8. Isemura M., Ikenaka T., Matsushima Y. Evidence for occurrence of a characteristic amino acid sequence of glycopeptides in the linkage region between peptide and carbohydrate. Biochem Biophys Res Commun. 1972 Jan 31;46(2):457–462. doi: 10.1016/s0006-291x(72)80160-8. [DOI] [PubMed] [Google Scholar]
  9. KIMMEL J. R., SMITH E. L. Crystalline papain. I. Preparation, specificity, and activation. J Biol Chem. 1954 Apr;207(2):515–531. [PubMed] [Google Scholar]
  10. Kieras F. J. The linkage region of cartilage keratan sulfate to protein. J Biol Chem. 1974 Dec 10;249(23):7506–7513. [PubMed] [Google Scholar]
  11. Kieras J. H., Kieras F. J., Bowen D. V. 2-O-methyl-D-glucuronic acid, a new hexuronic acid of biological origin. Biochem J. 1976 Apr 1;155(1):181–185. doi: 10.1042/bj1550181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Knecht J., Cifonelli J. A., Dorfman A. Structural studies on heparitin sulfate of normal and Hurler tissues. J Biol Chem. 1967 Oct 25;242(20):4652–4661. [PubMed] [Google Scholar]
  13. LINDAHL U., RODEN L. THE ROLE OF GALACTOSE AND XYLOSE IN THE LINKAGE OF HEPARIN TO PROTEIN. J Biol Chem. 1965 Jul;240:2821–2826. [PubMed] [Google Scholar]
  14. Lamport D. T., Miller D. H. Hydroxyproline arabinosides in the plant kingdom. Plant Physiol. 1971 Oct;48(4):454–456. doi: 10.1104/pp.48.4.454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lamport D. T. The isolation and partial characterization of hydroxyproline-rich glycopeptides obtained by enzymic degradation of primary cell walls. Biochemistry. 1969 Mar;8(3):1155–1163. doi: 10.1021/bi00831a049. [DOI] [PubMed] [Google Scholar]
  16. Lee Y. C., Lang D. D-galactose di- and trisaccharides from the earthworm cuticle collagen. J Biol Chem. 1968 Feb 10;243(3):677–680. [PubMed] [Google Scholar]
  17. Lindahl U., Rodén L. The chondroitin 4-sulfate-protein linkage. J Biol Chem. 1966 May 10;241(9):2113–2119. [PubMed] [Google Scholar]
  18. Miller D. H., Lamport D. T., Miller M. Hydroxyproline heterooligosaccharides in Chlamydomonas. Science. 1972 May 26;176(4037):918–920. doi: 10.1126/science.176.4037.918. [DOI] [PubMed] [Google Scholar]
  19. Morgan P. H., Jacobs H. G., Segrest J. P., Cunningham L. W. A comparative study of glycopeptides derived from selected vertebrate collagens. A possible role of the carbohydrate in fibril formation. J Biol Chem. 1970 Oct 10;245(19):5042–5048. [PubMed] [Google Scholar]
  20. SOWDEN J. C. The saccharinic acids. Adv Carbohydr Chem. 1957;12:35–79. doi: 10.1016/s0096-5332(08)60204-0. [DOI] [PubMed] [Google Scholar]
  21. Shier W. T., Lin Y., De Vries A. L. Structure and mode of action of glycoproteins from an antarctic fish. Biochim Biophys Acta. 1972 Apr 15;263(2):406–413. doi: 10.1016/0005-2795(72)90092-x. [DOI] [PubMed] [Google Scholar]
  22. Stern E. L., Lindahl B., Rodén L. The linkage of dermatan sulfate to protein. II. Monosaccharide sequence of the linkage region. J Biol Chem. 1971 Sep 25;246(18):5707–5715. [PubMed] [Google Scholar]
  23. Stoolmiller A. C., Dorfman A. The biosynthesis of hyaluronic acid by Streptococcus. J Biol Chem. 1969 Jan 25;244(2):236–246. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES