Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1977 Jul 1;165(1):55–59. doi: 10.1042/bj1650055

An automatic method for deriving steady-state rate equations.

A Cornish-Bowden
PMCID: PMC1164868  PMID: 889575

Abstract

A method is described for systematically deriving steady-state rate equations. It is based on the schematic method of King & Altman [J. Phys. Chem. (1956) 60, 1375-1378], but is expressed in purely algebraic terms. It is suitable for implementation as a computer program, and a program has been written in FORTRAN IV and deposited as Supplementary Publication SUP 50078 (12 pages) at the British Library (Lending Division), Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1977) 161, 1-2.

Full text

PDF
55

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ainsworth S. A slide rule for deriving the rate equations of enzyme catalysed reactions with unbranched mechanisms. J Theor Biol. 1974 Mar;44(1):161–165. doi: 10.1016/s0022-5193(74)80036-6. [DOI] [PubMed] [Google Scholar]
  2. Cha S. A simple method for derivation of rate equations for enzyme-catalyzed reactions under the rapid equilibrium assumption or combined assumptions of equilibrium and steady state. J Biol Chem. 1968 Feb 25;243(4):820–825. [PubMed] [Google Scholar]
  3. Childs R. E., Bardsley W. G. The steady-state kinetics of peroxidase with 2,2'-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as chromogen. Biochem J. 1975 Jan;145(1):93–103. doi: 10.1042/bj1450093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cornish-Bowden A. Algebraic methods for deriving steady-state rate equations. Practical difficulties with mechanisms that contain repeated rate constants. Biochem J. 1976 Oct 1;159(1):167–167. doi: 10.1042/bj1590167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Crabbe M. J., Bardsley W. G. Deviation from Michaelis-Menten kinetics for fumarase. Biochem J. 1976 Aug 1;157(2):333–337. doi: 10.1042/bj1570333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fromm H. J. A simplified schematic method for deriving steady-state rate equations using a modification of the "theory of graphs" procedure. Biochem Biophys Res Commun. 1970 Aug 11;40(3):692–697. doi: 10.1016/0006-291x(70)90959-9. [DOI] [PubMed] [Google Scholar]
  7. Hurst R. O. A computer program for writing the steady-state rate equation for a multisubstrate enzymic reaction. Can J Biochem. 1969 Oct;47(10):941–944. doi: 10.1139/o69-147. [DOI] [PubMed] [Google Scholar]
  8. Hurst R. O. A simplified approach to the use of determinants in the calculation of the rat equation for a complex enzyme system. Can J Biochem. 1967 Dec;45(12):2015–2039. doi: 10.1139/o67-235. [DOI] [PubMed] [Google Scholar]
  9. Indge K. J., Childs R. E. A new method for deriving steady-state rate equations suitable for manual or computer use. Biochem J. 1976 Jun 1;155(3):567–570. doi: 10.1042/bj1550567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kinderlerer J., Ainsworth S. A computer program to derive the rate equations of enzyme catalysed reactions with up to ten enzyme-containing intermediates in the reaction mechanism. Int J Biomed Comput. 1976 Jan;7(1):1–20. doi: 10.1016/0020-7101(76)90002-7. [DOI] [PubMed] [Google Scholar]
  11. Lam C. F., Priest D. G. Enzyme kinetics. Systematic generation of valid King-Altman patterns. Biophys J. 1972 Mar;12(3):248–256. doi: 10.1016/S0006-3495(72)86084-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Meunier J. C., Buc J., Navarro A., Ricard J. Regulatory behavior of monomeric enzymes. 2. A wheat-germ hexokinase as a mnemonical enzyme. Eur J Biochem. 1974 Nov 1;49(1):209–223. doi: 10.1111/j.1432-1033.1974.tb03826.x. [DOI] [PubMed] [Google Scholar]
  13. Orsi B. A. A simple method for the derivation of the steady-state rate equation for an enzyme mechanism. Biochim Biophys Acta. 1972 Jan 20;258(1):4–8. doi: 10.1016/0005-2744(72)90961-8. [DOI] [PubMed] [Google Scholar]
  14. Rhoads D. G., Pring M. The simulation and analysis by digital computer of biochemical systems in terms of kinetic models. IV. Automatic derivation of enzymic rate laws. J Theor Biol. 1968 Sep;20(3):297–313. doi: 10.1016/0022-5193(68)90130-6. [DOI] [PubMed] [Google Scholar]
  15. Rudolph F. B., Fromm H. J. Use of isotope competition and alternative substrates for studying the kinetic mechanism of enzyme action. II. Rate equations for three substrate enzyme systems. Arch Biochem Biophys. 1971 Dec;147(2):515–526. doi: 10.1016/0003-9861(71)90409-7. [DOI] [PubMed] [Google Scholar]
  16. Seshagiri N. Chart method for the analysis of enzyme kinetic reactions. J Theor Biol. 1972 Mar;34(3):469–486. doi: 10.1016/0022-5193(72)90136-1. [DOI] [PubMed] [Google Scholar]
  17. Storer A. C., Cornish-Bowden A. Kinetic evidence for a 'mnemonical' mechanism for rat liver glucokinase. Biochem J. 1977 Jul 1;165(1):61–69. doi: 10.1042/bj1650061. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES