Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1977 Aug 1;165(2):337–345. doi: 10.1042/bj1650337

Subtilisin modification of monodeamidated ribonuclease-A

B N Manjula 1,*, A Seetharama Acharya 1,, Paul J Vithayathil 1
PMCID: PMC1164906  PMID: 921753

Abstract

Limited proteolysis of RNAase-Aa1 (monodeamidated ribonuclease-A) by subtilisin results in the formation of an active RNAase-S type of derivative, namely RNAase-Aa1S. RNAase-Aa1S was chromatographically distinct from RNAase-S, but exhibited very nearly the same enzymic activity, antigenic conformation and susceptibility to trypsin as did RNAase-S. Fractionation of RNAase-Aa1S by trichloroacetic acid yielded RNAase-Aa1S-protein and RNAase-Aa1S-peptide, both of which are inactive by themselves, but regenerate active RNAase-Aa1S′ when mixed together. RNAase-Aa1S-peptide was identical with RNAase-S-peptide, whereas the protein part was distinct from that of RNAase-S-protein. Titration of RNAase-Aa1S-protein with S-peptide exhibited slight but noticeably weaker binding of the peptide to the deamidated S-protein as compared with that of native protein. Unlike the subtilisin digestion of RNAase-A, which gives nearly 100% conversion into RNAase-S, the digestion of RNAase-Aa1 gives only a 50% conversion. The resistance of RNAase-Aa1 to further subtilisin modification after 50% conversion is apparently due to the interaction of RNAase-Aa1 with its subtilisin-modified product. RNAase-S was also found to undergo activity and structural changes in acidic solutions, similar to those of RNAase-A. The initial reaction product (RNAase-Sa1) isolated by chromatography was not homogeneous. Unlike the acid treatment of RNAase-A, which affected only the S-protein part, the acid treatment of RNAase-S affected both the S-protein and the S-peptide region of the molecule.

Full text

PDF
337

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLENDE J. E., RICHARDS F. M. The action of trypsin on ribonuclease-S. Biochemistry. 1962 Mar;1:295–304. doi: 10.1021/bi00908a017. [DOI] [PubMed] [Google Scholar]
  2. Acharya A. S., Vithayathil P. J. On the reactivity of carboxyl groups of ribonuclease-A in anhydrous methanol. Int J Pept Protein Res. 1975;7(3):207–219. doi: 10.1111/j.1399-3011.1975.tb02435.x. [DOI] [PubMed] [Google Scholar]
  3. Anfinsen C. B., Scheraga H. A. Experimental and theoretical aspects of protein folding. Adv Protein Chem. 1975;29:205–300. doi: 10.1016/s0065-3233(08)60413-1. [DOI] [PubMed] [Google Scholar]
  4. CRESTFIELD A. M., STEIN W. H., MOORE S. On the aggregation of bovine pancreatic ribonuclease. Arch Biochem Biophys. 1962 Sep;Suppl 1:217–222. [PubMed] [Google Scholar]
  5. Corradin G., Harbury H. A. Reconstitution of horse heart cytochrome c: interaction of the components obtained upon cleavage of the peptide bond following methionine residue 65. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3036–3039. doi: 10.1073/pnas.68.12.3036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Doscher M. S., Hirs C. H. The heterogeneity of bovine pancreatic ribonuclease S. Biochemistry. 1967 Jan;6(1):304–312. doi: 10.1021/bi00853a047. [DOI] [PubMed] [Google Scholar]
  7. Dunn B. M., Chaiken I. M. Relationship between alpha-helical propensity and formation of the ribonuclease-S complex. J Mol Biol. 1975 Jul 15;95(4):497–511. doi: 10.1016/0022-2836(75)90313-7. [DOI] [PubMed] [Google Scholar]
  8. Dunn B. M., DiBello C., Kirk K. L., Cohen L. A., Chaiken I. M. Synthesis, purification, and properties of a semisynthetic ribonuclease S incorporating 4-fluoro-L-histidine at position 12. J Biol Chem. 1974 Oct 10;249(19):6295–6301. [PubMed] [Google Scholar]
  9. FINN F. M., HOFMANN K. STUDIES ON POLYPEPTIDES. 33. ENZYMIC PROPERTIES OF PARTIALLY SYNTHETIC RIBONUCLEASES. J Am Chem Soc. 1965 Feb 5;87:645–651. doi: 10.1021/ja01081a043. [DOI] [PubMed] [Google Scholar]
  10. Fung D. S., Doscher M. S. Preparation and crystallization of 41-dinitrophenyl ribonuclease S. Biochemistry. 1971 Oct 26;10(22):4099–4104. doi: 10.1021/bi00798a014. [DOI] [PubMed] [Google Scholar]
  11. Lin M. C., Gutte B., Moore S., Merrifield R. B. Regeneration of activity by mixture of ribonuclease enzymically degraded from the COOH terminus and a synthetic COOH-terminal tetradecapeptide. J Biol Chem. 1970 Oct 10;245(19):5169–5170. [PubMed] [Google Scholar]
  12. Manjula B. N., Acharya A. S., Vithayathil P. J. Deamidated active intermediates in the irreversible acid denaturation of ribonuclease-A. Int J Pept Protein Res. 1976;8(3):275–282. doi: 10.1111/j.1399-3011.1976.tb02504.x. [DOI] [PubMed] [Google Scholar]
  13. POTTS J. T., Jr, YOUNG D. M., ANFINSEN C. B. Reconstitution of fully active RNase S by carboxypeptidase-degraded RNase S-peptide. J Biol Chem. 1963 Jul;238:2593–2594. [PubMed] [Google Scholar]
  14. RICHARDS F. M., VITHAYATHIL P. J. Peptide-protein interactions in ribonuclease-S. Brookhaven Symp Biol. 1960 Nov;13:115–134. [PubMed] [Google Scholar]
  15. RICHARDS F. M., VITHAYATHIL P. J. The preparation of subtilisn-modified ribonuclease and the separation of the peptide and protein components. J Biol Chem. 1959 Jun;234(6):1459–1465. [PubMed] [Google Scholar]
  16. Richards F. M. ON THE ENZYMIC ACTIVITY OF SUBTILISIN-MODIFIED RIBONUCLEASE. Proc Natl Acad Sci U S A. 1958 Feb;44(2):162–166. doi: 10.1073/pnas.44.2.162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Scoffone E., Rocchi R., Marchiori F., Moroder L., Marzotto A., Tamburro A. M. Synthesis of peptide analogs of the N-terminal eicosapeptide sequence of ribonuclease A. VII. Synthesis of ile, orn -and ala, orn -eicosapeptides. J Am Chem Soc. 1967 Oct 11;89(21):5450–5455. doi: 10.1021/ja00997a028. [DOI] [PubMed] [Google Scholar]
  18. TABORSKY G. Chromatography of ribonuclease on carboxymethyl cellulose columns. J Biol Chem. 1959 Oct;234:2652–2656. [PubMed] [Google Scholar]
  19. Taniuchi H., Anfinsen C. B. An experimental approach to the study of the folding of staphylococcal nuclease. J Biol Chem. 1969 Jul 25;244(14):3864–3875. [PubMed] [Google Scholar]
  20. VITHAYATHIL P. J., RICHARDS F. M. The carboxyl and amide groups of the peptide component of ribonuclease-S. J Biol Chem. 1961 May;236:1380–1385. [PubMed] [Google Scholar]
  21. Welling G. W., Lenstra J. A., Beintema J. J. Activity and antigenicity of ribonuclease hybrids. FEBS Lett. 1976 Mar 15;63(1):89–94. doi: 10.1016/0014-5793(76)80201-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES