Abstract
1. Methane mono-oxygenase of Methylococcus capsulatus (Bath) catalyses the oxidation of various substituted methane derivatives including methanol. 2. It is a very non-specific oxygenase and, in some of its catalytic properties, apparently resembles the analogous enzyme from Methylomonas methanica but differs from those found in Methylosinus trichosporium and Methylomonas albus. 3. CO is oxidized to CO2. 4. C1-C8 n-alkanes are hydroxylated, yielding mixtures of the corresponding 1- and 2-alcohols; no 3- or 4-alcohols are formed. 5. Terminal alkenes yield the corresponding 1,2-epoxides. cis- or trans-but-2-ene are each oxidized to a mixture of 2,3-epoxybutane and but-2-en-1-ol with retention of the cis or trans configuration in both products; 2-butanone is also formed from cis-but-2-ene only. 6. Dimethyl ether is oxidized. Diethyl ether undergoes sub-terminal oxidation, yielding ethanol and ethanal in equimolar amounts. 7. Methane mono-oxygenase also hydroxylates cyclic alkanes and aromatic compounds. However, styrene yields only styrene epoxide and pyridine yields only pyridine N-oxide. 8. Of those compounds tested, only NADPH can replace NADH as electron donor.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anthony C., Zatman L. J. The microbial oxidation of methanol. 2. The methanol-oxidizing enzyme of Pseudomonas sp. M 27. Biochem J. 1964 Sep;92(3):614–621. doi: 10.1042/bj0920614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Björkhem I., Danielsson H. Oxidation of branched-chain fatty acids in rat liver homogenates. Eur J Biochem. 1970 Jul;14(3):473–477. doi: 10.1111/j.1432-1033.1970.tb00313.x. [DOI] [PubMed] [Google Scholar]
- Cardini G., Jurtshuk P. The enzymatic hydroxylation of n-octane by Corynebacterium sp. strain 7E1C. J Biol Chem. 1970 Jun 10;245(11):2789–2796. [PubMed] [Google Scholar]
- Colby J., Dalton H. Some properties of a soluble methane mono-oxygenase from Methylococcus capsulatus strain Bath. Biochem J. 1976 Aug 1;157(2):495–497. doi: 10.1042/bj1570495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colby J., Dalton H., Whittenbury R. An improved assay for bacterial methane mono-oxygenase: some properties of the enzyme from Methylomonas methanica. Biochem J. 1975 Nov;151(2):459–462. doi: 10.1042/bj1510459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellin A., Orrenius S. Hydroperoxide-supported cytochrome P-450-linked fatty acid hydroxylation in liver microsomes. FEBS Lett. 1975 Feb 15;50(3):378–381. doi: 10.1016/0014-5793(75)80532-1. [DOI] [PubMed] [Google Scholar]
- Ferenci T., Strom T., Quayle J. R. Oxidation of carbon monoxide and methane by Pseudomonas methanica. J Gen Microbiol. 1975 Nov;91(1):79–91. doi: 10.1099/00221287-91-1-79. [DOI] [PubMed] [Google Scholar]
- Gustafsson J. A., Bergman J. Iodine- and chlorine-containing oxidation agents as hydroxylating catalysts in cytochrome P-450-dependent fatty acid hydroxylation reactions in rat liver microsomes. FEBS Lett. 1976 Nov;70(1):276–280. doi: 10.1016/0014-5793(76)80774-0. [DOI] [PubMed] [Google Scholar]
- Heinz E., Tulloch A. P., Spencer J. F. Hydroxylation of oleic acid by cell-free extracts of a species of torulopsis. Biochim Biophys Acta. 1970 Feb 10;202(1):49–55. doi: 10.1016/0005-2760(70)90217-1. [DOI] [PubMed] [Google Scholar]
- Hrycay E. G., Gustafsson J. A., Ingelman-Sundberg M., Ernster L. Sodium periodate, sodium chlorite, and organic hydroperoxides as hydroxylating agents in hepatic microsomal steroid hydroxylation reactions catalyzed by cytochrome P-450. FEBS Lett. 1975 Aug 1;56(1):161–165. doi: 10.1016/0014-5793(75)80132-3. [DOI] [PubMed] [Google Scholar]
- Johnson P. A., Quayle J. R. Microbial growth on C-1 compounds. 6. Oxidation of methanol, formaldehyde and formate by methanol-grown Pseudomonas AM-1. Biochem J. 1964 Nov;93(2):281–290. doi: 10.1042/bj0930281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klein D. A., Davis J. A., Casida L. E., Jr Oxidation of n-alkanes to ketones by an Arthrobacter species. Antonie Van Leeuwenhoek. 1968;34(4):495–503. doi: 10.1007/BF02046471. [DOI] [PubMed] [Google Scholar]
- LEADBETTER E. R., FOSTER J. W. Bacterial oxidation of gaseous alkanes. Arch Mikrobiol. 1960;35:92–104. doi: 10.1007/BF00425597. [DOI] [PubMed] [Google Scholar]
- May S. W., Abbott B. J. Enzymatic epoxidation. II. Comparison between the epoxidation and hydroxylation reactions catalyzed by the -hydroxylation system of Pseudomonas oleovorans. J Biol Chem. 1973 Mar 10;248(5):1725–1730. [PubMed] [Google Scholar]
- Ribbons D. W. Oxidation of C1 Compounds by Particulate fractions from Methylococcus capsulatus: distribution and properties of methane-dependent reduced nicotinamide adenine dinucleotide oxidase (methane hydroxylase). J Bacteriol. 1975 Jun;122(3):1351–1363. doi: 10.1128/jb.122.3.1351-1363.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tonge G. M., Harrison D. E., Higgins I. J. Purification and properties of the methane mono-oxygenase enzyme system from Methylosinus trichosporium OB3b. Biochem J. 1977 Feb 1;161(2):333–344. doi: 10.1042/bj1610333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whittenbury R., Phillips K. C., Wilkinson J. F. Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol. 1970 May;61(2):205–218. doi: 10.1099/00221287-61-2-205. [DOI] [PubMed] [Google Scholar]