Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1977 Jul 15;166(1):89–94. doi: 10.1042/bj1660089

Polyamines and their biosynthetic enzymes in Ehrlich ascites-carcinoma cells. Modification of tumour polyamine pattern by diamines.

A Kallio, H Pösö, S K Guha, J Jänne
PMCID: PMC1164960  PMID: 901422

Abstract

1. Ehrlich ascites-carcinoma cells contained relatively high concentrations of spermidine and spermine, but the putrescine content of the washed cells was less than 10% of that of higher polyamines. 2. Ascites-tumour cells likewise exhibited high activities of L-ornithine decarboxylase (EC 4.1.1.17), S-adenosyl-L-methionine decarboxylase (EC 4.1.1.50), spermidine synthase (EC 2.5.1.16) and spermine synthase. 3. During the first days after the inoculation, the polyamine pattern of the ascites cells was characterized by a high molar ratio of spermidine to spermine, which markedly decreased on aging of the cells. 4. Various diamines injected into mice bearing ascites cells rapidly and powerfully decreased ornithine decarboxylase activity in the carcinoma cells, apparently through a mechanism that was not a direct inhibition of the enzyme in vitro. Cadaverine (1,5-diaminopentane) and 1,6-diaminohexane were the most potent inhibitors of ornithine decarboxylase among the amines tested. 5. Chronic treatment of the mice with diamines resulted in a virtually complete disappearance of ornithine decarboxylase activity, and after 24h a significant decline in spermidine accumulation. 6. Cadaverine appeared to be an especially suitable compound for use as an inhibitor of the synthesis of higher polyamines, at least in Ehrlich ascites cells, since this diamine also acted as a competitive inhibitor for putrescine in the spermidine synthase reaction without being incorporated into the higher polyamines.

Full text

PDF
89

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson G., Heby O. Polyamine and nucleic acid concentrations in Ehrlich ascites carcinoma cells and liver of tumor-bearing mice at various stages of tumor growth. J Natl Cancer Inst. 1972 Jan;48(1):165–172. [PubMed] [Google Scholar]
  2. Clark J. L. Specific induction of ornithine decarboxylase in 3T3 mouse fibroblasts by pituitary growth factors: cell density-dependent biphasic response and alteration of half-life. Biochemistry. 1974 Oct 22;13(22):4668–4674. doi: 10.1021/bi00719a031. [DOI] [PubMed] [Google Scholar]
  3. Hannonen P., Jänne J., Raina A. Partial purification and characterization of spermine synthase from rat brain. Biochim Biophys Acta. 1972 Nov 10;289(1):225–231. doi: 10.1016/0005-2744(72)90125-8. [DOI] [PubMed] [Google Scholar]
  4. Harik S. I., Hollenberg M. D., Snyder S. H. Alpha-hydrazino-ornithine blocks net synthesis of putrescine but not of RNA and DNA. Nature. 1974 May 17;249(454):250–251. doi: 10.1038/249250a0. [DOI] [PubMed] [Google Scholar]
  5. Inoue H., Kato Y., Takigawa M., Adachi K., Takeda Y. Effect of DL-alpha-hydrazino-delta-aminovaleric acid, an inhibitor of ornithine decarboxylase, on polyamine metabolism in isoproterenol-stimulated mouse parotid glands. J Biochem. 1975 Apr;77(4):879–893. doi: 10.1093/oxfordjournals.jbchem.a130796. [DOI] [PubMed] [Google Scholar]
  6. Jänne J., Schenone A., Williams-Ashman H. G. Separation of two proteins required for synthesis of spermidine from S-adenosyl-L-methionine and putrescine in rat prostate. Biochem Biophys Res Commun. 1971 Feb 19;42(4):758–764. doi: 10.1016/0006-291x(71)90552-3. [DOI] [PubMed] [Google Scholar]
  7. Jänne J., Williams-Ashman H. G. Dissociation of putrescine-activated decarboxylation of S-adenosyl-L-methionine from the enzymic synthesis of spermidine and spermine by purified prostatic enzyme preparations. Biochem Biophys Res Commun. 1971 Jan 22;42(2):222–229. [PubMed] [Google Scholar]
  8. Jänne J., Williams-Ashman H. G. On the purification of L-ornithine decarboxylase from rat prostate and effects of thiol compounds on the enzyme. J Biol Chem. 1971 Mar 25;246(6):1725–1732. [PubMed] [Google Scholar]
  9. Kay J. E., Lindsay V. J. Control of ornithine decarboxylase activity in stimulated human lymphocytes by putrescine and spermidine. Biochem J. 1973 Apr;132(4):791–796. doi: 10.1042/bj1320791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Mamont P. S., Böhlen P., McCann P. P., Bey P., Schuber F., Tardif C. Alpha-methyl ornithine, a potent competitive inhibitor of ornithine decarboxylase, blocks proliferation of rat hepatoma cells in culture. Proc Natl Acad Sci U S A. 1976 May;73(5):1626–1630. doi: 10.1073/pnas.73.5.1626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Noguchi T., Kashiwagi A., Tanaka T. Changes in ornithine decarboxylase activity in normal tissues of tumor-bearing mice during tumor growth. J Biochem. 1976 Feb;79(2):451–454. doi: 10.1093/oxfordjournals.jbchem.a131088. [DOI] [PubMed] [Google Scholar]
  13. Pegg A. E., Williams-Ashman H. G. On the role of S-adenosyl-L-methionine in the biosynthesis of spermidine by rat prostate. J Biol Chem. 1969 Feb 25;244(4):682–693. [PubMed] [Google Scholar]
  14. Pöso H., Jänne J. Inhibition of ornithine decarboxylase activity and spermidine accumulation in regenerating rat liver. Biochem Biophys Res Commun. 1976 Apr 19;69(4):885–892. doi: 10.1016/0006-291x(76)90456-3. [DOI] [PubMed] [Google Scholar]
  15. Pösö H., Jänne J. Inhibition of polyamine accumulation and deoxyribonucleic acid synthesis in regenerating rat liver. Biochem J. 1976 Aug 15;158(2):485–488. doi: 10.1042/bj1580485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Raina A., Cohen S. S. Polyamines and RNA synthesis in a polyauxotrophic strain of E. coli. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1587–1593. doi: 10.1073/pnas.55.6.1587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Raina A., Pajula R. L., Eloranta T. A rapid assay method for spermidine and spermine synthases. Distribution of polyamine-synthesizing enzymes and methionine adenosyltransferase in rat tissues. FEBS Lett. 1976 Sep 1;67(3):252–255. doi: 10.1016/0014-5793(76)80540-6. [DOI] [PubMed] [Google Scholar]
  18. Relyea N., Rando R. R. Potent inhibition of ornithine decarboxylase by beta,gamma unsaturated substrate analogs. Biochem Biophys Res Commun. 1975 Nov 3;67(1):392–398. doi: 10.1016/0006-291x(75)90328-9. [DOI] [PubMed] [Google Scholar]
  19. Tabor H., Tabor C. W. Biosynthesis and metabolism of 1,4-diaminobutane, spermidine, spermine, and related amines. Adv Enzymol Relat Areas Mol Biol. 1972;36:203–268. doi: 10.1002/9780470122815.ch7. [DOI] [PubMed] [Google Scholar]
  20. Williams-Ashman H. G., Schenone A. Methyl glyoxal bis(guanylhydrazone) as a potent inhibitor of mammalian and yeast S-adenosylmethionine decarboxylases. Biochem Biophys Res Commun. 1972 Jan 14;46(1):288–295. doi: 10.1016/0006-291x(72)90661-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES