Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1977 Sep 15;166(3):495–499. doi: 10.1042/bj1660495

Calcium ion-dependent diacylglycerol accumulation in erythrocytes is associated with microvesiculation but not with efflux of potassium ions.

D Allan, R H Michell
PMCID: PMC1165033  PMID: 339908

Abstract

Erythrocytes from several different species were exposed to Ca2+ and the bivalent-cation ionophore A23187. The lipid composition, morphology and K+ permeability of the treated cells were investigated. Erythrocytes from human, rat, guinea pig and rabbit (a) showed an increased concentration of 1,2-diacyl-sn-glycerol and enhanced labelling of phosphatidate with 32P, (b) underwent echinocytosis and outward vesiculation, and (c) rapidly released much of their intracellular K+. Pig cells showed only the K+ loss, and ox and sheep (high-K+) cells showed none of these Ca2+-evoked effects. All of the cells underwent stomatocytosis and inward vesiculation when treated externally with Clostridium perfringens phospholipase C. These results support the idea that there is a correlation between the asymmetric insertion of diacylglycerol (or ceramide) into the membrane and the shape-changes leading to microvesiculation, but they indicate that Ca2+-triggered K+ efflux and diacylglycerol production are unrelated events. Erythrocytes of chicken and turkey showed no Ca2+-stimulated K+ efflux. They showed slight ionophore A23187-stimulated vesiculation, but this appeared to be associated with the appearance in the membrane of ceramide rather than of diacylglycerol. Phospholipase C treatment caused very similar changes in morphology and phosphatidate labelling to those seen in mammalian erythrocytes.

Full text

PDF
495

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan D., Billah M. M., Finean J. B., Michell R. H. Release of diacylglycerol-enriched vesicles from erythrocytes with increased intracellular (Ca2+). Nature. 1976 May 6;261(5555):58–60. doi: 10.1038/261058a0. [DOI] [PubMed] [Google Scholar]
  2. Allan D., Low M. G., Finean J. B., Michell R. H. Changes in lipid metabolism and cell morphology following attack by phospholipase C (Clostridium perfringens) on red cells or lymphocytes. Biochim Biophys Acta. 1975 Dec 1;413(2):309–316. doi: 10.1016/0005-2736(75)90116-9. [DOI] [PubMed] [Google Scholar]
  3. Allan D., Michell R. H. Accumulation of 1,2-diacylglycerol in the plasma membrane may lead to echinocyte transformation of erythrocytes. Nature. 1975 Nov 27;258(5533):348–349. doi: 10.1038/258348a0. [DOI] [PubMed] [Google Scholar]
  4. Allan D., Michell R. H. Metabolism of phosphatidate at the plasma membrane. Biochem Soc Trans. 1977;5(1):55–59. doi: 10.1042/bst0050055. [DOI] [PubMed] [Google Scholar]
  5. Allan D., Michell R. H. Production of 1,2-diacylglycerol in human erythrocyte membranes exposed to low concentrations of calcium ions. Biochim Biophys Acta. 1976 Dec 14;455(3):824–830. doi: 10.1016/0005-2736(76)90052-3. [DOI] [PubMed] [Google Scholar]
  6. Allan D., Watts R., Michell R. H. Production of 1,2-diacylglycerol and phosphatidate in human erythrocytes treated with calcium ions and ionophore A23187. Biochem J. 1976 May 15;156(2):225–232. doi: 10.1042/bj1560225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Armando-Hardy M., Ellory J. C., Ferreira H. G., Fleminger S., Lew V. L. Inhibition of the calcium-induced increase in the potassium permeability of human red blood cells by quinine. J Physiol. 1975 Aug;250(1):32P–33P. [PubMed] [Google Scholar]
  8. Campbell A. K., Siddle K. The effect of intracellular calcium ions on adrenaline-stimulated adenosine 3':5'-cyclic monophosphate concentrations in pigeon erythrocytes, studied by using the ionophore A23187. Biochem J. 1976 Aug 15;158(2):211–221. doi: 10.1042/bj1580211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Freeman C. P., West D. Complete separation of lipid classes on a single thin-layer plate. J Lipid Res. 1966 Mar;7(2):324–327. [PubMed] [Google Scholar]
  10. Hirshfeld D., Loyter A. Sphingomyelinase of chicken erythrocyte membranes. Arch Biochem Biophys. 1975 Mar;167(1):186–192. doi: 10.1016/0003-9861(75)90455-5. [DOI] [PubMed] [Google Scholar]
  11. Lew V. L., Ferreira H. G. Variable Ca sensitivity of a K-selective channel in intact red-cell membranes. Nature. 1976 Sep 23;263(5575):336–338. doi: 10.1038/263336a0. [DOI] [PubMed] [Google Scholar]
  12. Michell R. H. Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta. 1975 Mar 25;415(1):81–47. doi: 10.1016/0304-4157(75)90017-9. [DOI] [PubMed] [Google Scholar]
  13. Michell R. H., Jafferji S. S., Jones L. M. Receptor occupancy dose--response curve suggests that phosphatidyl-inositol breakdown may be intrinsic to the mechanism of the muscarinic cholinergic receptor. FEBS Lett. 1976 Oct 15;69(1):1–5. doi: 10.1016/0014-5793(76)80640-0. [DOI] [PubMed] [Google Scholar]
  14. Reed P. W. Effects of divalent cation ionophore A23187 on potassium permeability of rat erythrocytes. J Biol Chem. 1976 Jun 10;251(11):3489–3494. [PubMed] [Google Scholar]
  15. Romero P. J. Role of membrane-bound Ca in ghost permeability to Na and K. J Membr Biol. 1976 Nov 29;29(4):329–343. doi: 10.1007/BF01868969. [DOI] [PubMed] [Google Scholar]
  16. Tyson C. A., Vande Zande H., Green D. E. Phospholipids as ionophores. J Biol Chem. 1976 Mar 10;251(5):1326–1332. [PubMed] [Google Scholar]
  17. Vos J., Ahkong Q. F., Botham G. M., Quirk S. J., Lucy J. A. Changes in the distribution of intramembranous particles in hen erythrocytes during cell fusion induced by the bivalent-cation ionophore A23187. Biochem J. 1976 Sep 15;158(3):651–653. doi: 10.1042/bj1580651. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES