Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1977 Sep 15;166(3):559–563. doi: 10.1042/bj1660559

The effects of altered sterol composition on the mitochondrial adenine nucleotide transporter of Saccharomyces cerevisiae.

J M Haslam, A M Astin, W W Nichols
PMCID: PMC1165041  PMID: 339909

Abstract

1. The membrane sterol composition of mitochondria of the ole-3 mutant of Saccharomyces cerevisiae was manipulated by growing the organism in the presence of Tween 80 (1%, W/V) plus defined supplements o- delta-aminolaevulinate. 2. Changes in mitochondrial sterol content induced considerable changes in the adenine nucleotide transporter. 3. As the sterol content was decreased, the affinity of the transporter for ATP did not alter significantly, but the rate of ATP uptake was greatly decreased, the total number of atractylate-sensitive binding sites diminished, and the proportion of high-affinity binding sites was decreased. 4. Since sterol depletion also uncouples oxidative phosphorylation [Astin & Haslam (1977) Biochem. J., 166, 287-298] and prevents the intramitochondrial generation of ATP, the decrease in the rate of ATP uptake by sterol-depleted mitochondria will cause a decrease in intramitochondrial ATP concentrations in vivo. This probably explains the inhibition of mitochondrial macromolecular synthesis that has previously been reported in lipid-depleted yeast mitochondria.

Full text

PDF
559

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Astin A. M., Haslam J. M. The effects of altered membrane sterol composition on oxidative phosphorylation in a haem mutant of Saccharomyces cerevisiae. Biochem J. 1977 Aug 15;166(2):287–298. doi: 10.1042/bj1660287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Astin A. M., Haslam J. M. The manipulation of cellular cytochrome and lipid composition in a haem mutant of Saccharomyces cerevisiae. Biochem J. 1977 Aug 15;166(2):275–285. doi: 10.1042/bj1660275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BRUNI A., LUCIANI S., CONTESSA A. R. INHIBITION BY ATRACTYLOSIDE OF THE BINDING OF ADENINE-NUCLEOTIDES TO RAT-LIVER MITOCHONDRIA. Nature. 1964 Mar 21;201:1219–1220. doi: 10.1038/2011219a0. [DOI] [PubMed] [Google Scholar]
  4. Groot G. S., Kovác L., Schatz G. Promitochondria of anaerobically grown yeast. V. Energy transfer in the absence of an electron transfer chain. Proc Natl Acad Sci U S A. 1971 Feb;68(2):308–311. doi: 10.1073/pnas.68.2.308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Haslam J. M., Fellows N. F. The role of unsaturated fatty acids in mitochondrial membrane functions. Biochem Soc Trans. 1975;3(5):772–775. doi: 10.1042/bst0030772. [DOI] [PubMed] [Google Scholar]
  6. Haslam J. M., Perkins M., Linnane A. W. Biogenesis of mitochondria. A requirement for mitochondrial protein synthesis for the formation of a normal adenine nucleotide transporter in yeast mitochondria. Biochem J. 1973 Aug;134(4):935–947. doi: 10.1042/bj1340935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Haslam J. M., Proudlock J. W., Linnane A. W. Biogenesis of mitochondria. 20. The effects of altered membrane lipid composition on mitochondrial oxidative phosphorylation in Saccharomyces cerevisiae. J Bioenerg. 1971 Dec;2(5):351–370. doi: 10.1007/BF01963830. [DOI] [PubMed] [Google Scholar]
  8. Klingenberg M., Grebe K., Scherer B. The binding of atractylate and carboxy-atractylate to mitochondria. Eur J Biochem. 1975 Mar 17;52(2):351–363. doi: 10.1111/j.1432-1033.1975.tb04003.x. [DOI] [PubMed] [Google Scholar]
  9. Klingenberg M. Metabolite transport in mitochondria: an example for intracellular membrane function. Essays Biochem. 1970;6:119–159. [PubMed] [Google Scholar]
  10. Kolarov J., Subík J., Kovac L. Oxidative phosphorylation in yeast. 8. Osmotic and permeability properties of mitochondria isolated from wild-type yeast and from a respiration-deficient mutant. Biochim Biophys Acta. 1972 Jun 23;267(3):457–464. doi: 10.1016/0005-2728(72)90173-9. [DOI] [PubMed] [Google Scholar]
  11. Lauquin G., Lunardi J., Vignais P. V. Effect of genetic and physiological manipulations onthe kinetic and binding parameters of the adenine nucleotide translocator in Saccharomyces cervisiae and Candida utilis. Biochimie. 1976;58(10):1213–1220. doi: 10.1016/s0300-9084(76)80120-4. [DOI] [PubMed] [Google Scholar]
  12. Lauquin G., Vignais P. V. Adenine nucleotide translocation in yeast mitochondria. Effect of inhibitors of mitochondrial biogenesis on the ADP translocase. Biochim Biophys Acta. 1973 Jun 28;305(3):534–556. doi: 10.1016/0005-2728(73)90074-1. [DOI] [PubMed] [Google Scholar]
  13. Marzuki S., Cobon G. S., Crowfoot P. D., Linnane A. W. Biogenesis of mitochondria. The effects of membrane unsaturated fatty acid content on the activity and assembly of the yeast mitochondrial protein-synthesizing system. Arch Biochem Biophys. 1975 Aug;169(2):591–600. doi: 10.1016/0003-9861(75)90203-9. [DOI] [PubMed] [Google Scholar]
  14. Marzuki S., Hall R. M., Linnane A. W. Induction of respiratory incompetent mutants by unsaturated fatty acid depletion in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1974 Mar 25;57(2):372–378. doi: 10.1016/0006-291x(74)90940-1. [DOI] [PubMed] [Google Scholar]
  15. Perkins M., Haslam J. M., Linnane A. W. Biogenesis of mitochondria. The effects of physiological and genetic manipulation of Saccharomyces cerevisiae on the mitochondrial transport systems for tricarboxylate-cycle anions. Biochem J. 1973 Aug;134(4):923–934. doi: 10.1042/bj1340923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Proudlock J. W., Haslam J. M., Linnane A. W. Biogenesis of mitochondria. 19. The effects of unsaturated fatty acid depletion on the lipid composition and energy metabolism of a fatty acid desaturase mutant of Saccharomyces cerevisiae. J Bioenerg. 1971 Dec;2(5):327–349. doi: 10.1007/BF01963829. [DOI] [PubMed] [Google Scholar]
  17. Scherer B., Klingenberg M. Demonstration of the relationship between the adenine nucleotide carrier and the structural changes of mitochondria as induced by adenosine 5'-diphosphate. Biochemistry. 1974 Jan 1;13(1):161–170. doi: 10.1021/bi00698a025. [DOI] [PubMed] [Google Scholar]
  18. Souverijn J. H., Huisman L. A., Rosing J., Kemp A., Jr Comparison of ADP and ATP as substrates for the adenine nucleotide translocator in rat-liver mitochondria. Biochim Biophys Acta. 1973 May 30;305(2):185–198. doi: 10.1016/0005-2728(73)90168-0. [DOI] [PubMed] [Google Scholar]
  19. Spencer T. L., Bygrave F. L. Inhibition by local anaesthetics of adenine nucleotide translocation in rat liver mitochondria. Biochem J. 1974 Jun;140(3):413–422. doi: 10.1042/bj1400413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Spencer T. L., See J. K., Bygrave F. L. Translocation and binding of adenine nucleotides by rat liver mitochondria partially depleted of phospholipids. Biochim Biophys Acta. 1976 Mar 12;423(3):365–373. doi: 10.1016/0005-2728(76)90193-6. [DOI] [PubMed] [Google Scholar]
  21. Spencer T., Bygrave F. L. The role of mitochondria in modifying the cellular ionic environment: studies of the kinetic accumulation of calcium by rat liver mitochondria. J Bioenerg. 1973 Apr;4(3):347–362. doi: 10.1007/BF01648977. [DOI] [PubMed] [Google Scholar]
  22. Subík J., Kolarov J., Kovác L. Obligatory requirement of intramitochondrial ATP for normal functioning of the eucaryotic cell. Biochem Biophys Res Commun. 1972 Oct 6;49(1):192–198. doi: 10.1016/0006-291x(72)90028-9. [DOI] [PubMed] [Google Scholar]
  23. Weidemann M. J., Erdelt H., Klingenberg M. Adenine nucleotide translocation of mitochondria. Identification of carrier sites. Eur J Biochem. 1970 Oct;16(2):313–335. doi: 10.1111/j.1432-1033.1970.tb01086.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES