Abstract
Purified preparations of human polymorphonuclear leucocytes contain a protein kinase in the cytosol which is stimulated by cyclic AMP and cyclic IMP but not by other cyclic nucleotides. The holoenzyme had a molecular weight of 66000 estimated by gel filtration; when it was incubated with histone or cyclic AMP, it dissociated into two smaller subunits of molecular weight 45000 and 30000; the former remained cyclic AMP-sensitive, whereas the latter had become independent of added cyclic AMP. By means of substrate-affinity chromatography on histone-Sepharose 4B, cyclic [3H5AMP-binding activity (regulatory or R subunit) could be resolved into two peaks of enzyme activity, one again independent of added cyclic AMP, with a molecular weight of 30000 (catalytic or C subunit). Also by means of substrate-affinity chromatography it was possible to resolve 'specific' polymorphonuclear leukocyte histone phosphatases from 'non-specific' phosphomonesterases capable of dephosphorylating histone previously phosphorylated by the protein kinase. Specific histone phosphatase displayed greatest affinity for histone-Sepharose 4B, followed by acid p-nitrophenyl phosphatase, and the unretained acid beta-glucerophosphatase. Polymorphonuclear leucocyte histone phosphatase, purified approx. 40-fold, was further resolved from the other phosphatases by gel filtration on Sephadex G-150 from which it was eluted with apparent molecular weights of 45000 and 18700. The apparent Km values for dephosphorylation of histone are 4.3 X 10-6M and 3.6 X 10-6M. Most (69%) of cytoplasmic histone phosphatase was found in the cell sap, whereas 20% remained tightly associated with polymorphonuclear leucocyte lysosomes from which it could not be solubilized by treatments (Triton X-100, freeze-thawing) that released approx. 70% of lysosomal beta-glucuronidase or acid phosphatases. Although both soluble and particulate enzymes required 5-10 mM-Mn2 for maximal activation, and showed a pH maximum of 6.5-7.0, only the particulate enzyme was partly inhibited by ammonium molybdate. Polymorphonuclear leucocyte histone phosphatases were neither inhibited nor stimulated by those cyclic nucleotides that greatly stimulate the protein kinase of the same subcellular fraction
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baggiolini M., Hirsch J. G., De Duve C. Further biochemical and morphological studies of granule fractions from rabbit heterophil leukocytes. J Cell Biol. 1970 Jun;45(3):586–597. doi: 10.1083/jcb.45.3.586. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baggiolini M., Hirsch J. G., De Duve C. Resolution of granules from rabbit heterophil leukocytes into distinct populations by zonal sedimentation. J Cell Biol. 1969 Feb;40(2):529–541. doi: 10.1083/jcb.40.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
- Corbin J. D., Brostrom C. O., King C. A., Krebs E. G. Studies on the adenosine 3',5'-monophosphate-dependent protein kinases of rabbit skeletal muscle. J Biol Chem. 1972 Dec 10;247(23):7790–7798. [PubMed] [Google Scholar]
- Cuatrecasas P. Protein purification by affinity chromatography. Derivatizations of agarose and polyacrylamide beads. J Biol Chem. 1970 Jun;245(12):3059–3065. [PubMed] [Google Scholar]
- Davies P., Rita G. A., Krakauer K., Weissmann G. Characterization of a neutral protease from lysosomes of rabbit polymorphonuclear leucocytes. Biochem J. 1971 Jul;123(4):559–569. doi: 10.1042/bj1230559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Estensen R. D., Hill H. R., Quie P. G., Gogan N., Goldberg N. D. Cyclic GMP and cell movement. Nature. 1973 Oct 26;245(5426):458–460. doi: 10.1038/245458a0. [DOI] [PubMed] [Google Scholar]
- Farquhar M. G., Bainton D. F., Baggiolini M., de Duve C. Cytochemical localization of acid phosphatase activity in granule fractions from rabbit polymorphonuclear leukocytes. J Cell Biol. 1972 Jul;54(1):141–156. doi: 10.1083/jcb.54.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GIANETTO R., DE DUVE C. Tissue fractionation studies. 4. Comparative study of the binding of acid phosphatase, beta-glucuronidase and cathepsin by rat-liver particles. Biochem J. 1955 Mar;59(3):433–438. doi: 10.1042/bj0590433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GLOMSET J. A. The further purification and properties of a phosphatase from spleen able to hydrolyze completely the phosphorus of alpha-casein. Biochim Biophys Acta. 1959 Apr;32:349–357. doi: 10.1016/0006-3002(59)90606-7. [DOI] [PubMed] [Google Scholar]
- Goldstein I., Hoffstein S., Gallin J., Weissmann G. Mechanisms of lysosomal enzyme release from human leukocytes: microtubule assembly and membrane fusion induced by a component of complement. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2916–2920. doi: 10.1073/pnas.70.10.2916. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HIRSCHHORN R., WEISSMANN G. ISOLATION AND PROPERTIES OF HUMAN LEUKOCYTE LYSOSOMES IN VITRO. Proc Soc Exp Biol Med. 1965 May;119:36–39. doi: 10.3181/00379727-119-30091. [DOI] [PubMed] [Google Scholar]
- Janoff A., Zeligs J. D. Vascular injury and lysis of basement membrane in vitro by neutral protease of human leukocytes. Science. 1968 Aug 16;161(3842):702–704. doi: 10.1126/science.161.3842.702. [DOI] [PubMed] [Google Scholar]
- Jergil B., Dixon G. H. Protamine kinase from rainbow trout testis. Partial purification and characterization. J Biol Chem. 1970 Jan 25;245(2):425–434. [PubMed] [Google Scholar]
- Kato K., Bishop J. S. Glycogen synthetase-D phosphatase. I. Some new properties of the partially purified enzyme from rabbit skeletal muscle. J Biol Chem. 1972 Nov 25;247(22):7420–7429. [PubMed] [Google Scholar]
- Kuo J. F., Wyatt G. R., Greengard P. Cyclic nucleotide-dependent protein kinases. IX. Partial purification and some properties of guanosine 3',5'-monophosphate-dependent and adenosine 3',5'-monophosphate-dependent protein kinases from various tissues and species of Arthropoda. J Biol Chem. 1971 Dec 10;246(23):7159–7167. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Louie A. J., Dixon G. H. Kinetics of phosphorylation and dephosphorylation of testis histones and their possible role in determining chromosomal structure. Nat New Biol. 1973 Jun 6;243(127):164–168. doi: 10.1038/newbio243164a0. [DOI] [PubMed] [Google Scholar]
- Maeno H., Greengard P. Phosphoprotein phosphatases from rat cerebral cortex. Subcellular distribution and characterization. J Biol Chem. 1972 May 25;247(10):3269–3277. [PubMed] [Google Scholar]
- Meisler M. H., Langan T. A. Characterization of a phosphatase specific for phosphorylated histones and protamine. J Biol Chem. 1969 Sep 25;244(18):4961–4968. [PubMed] [Google Scholar]
- Miyamoto E., Kuo J. F., Greengard P. Cyclic nucleotide-dependent protein kinases. 3. Purification and properties of adenosine 3',5'-monophosphate-dependent protein kinase from bovine brain. J Biol Chem. 1969 Dec 10;244(23):6395–6402. [PubMed] [Google Scholar]
- Neil M. W., Horner M. W. Studies on acid hydrolases in adult and foetal tissues. Acid rho-nitrophenyl phosphate phosphohydrolases of adult guinea-pig liver. Biochem J. 1964 Jul;92(1):217–224. doi: 10.1042/bj0920217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PAIGEN K., GRIFFITHS S. K. The intracellular location of phosphoprotein phosphatase activity. J Biol Chem. 1959 Feb;234(2):299–303. [PubMed] [Google Scholar]
- PAIGEN K. The properties of particulate phosphoprotein phosphatase. J Biol Chem. 1958 Aug;233(2):388–394. [PubMed] [Google Scholar]
- REVEL H. R., RACKER E. Studies on a phosphoprotein phosphatase derived from beef spleen. Biochim Biophys Acta. 1960 Oct 7;43:465–476. doi: 10.1016/0006-3002(60)90469-8. [DOI] [PubMed] [Google Scholar]
- Rabinovitch M., DeStefano M. J. Manganese stimulates adhesion and spreading of mouse sarcoma I ascites cells. J Cell Biol. 1973 Oct;59(1):165–176. doi: 10.1083/jcb.59.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reimann E. M., Brostrom C. O., Corbin J. D., King C. A., Krebs E. G. Separation of regulatory and catalytic subunits of the cyclic 3',5'-adenosine monophosphate-dependent protein kinase(s) of rabbit skeletal muscle. Biochem Biophys Res Commun. 1971 Jan 22;42(2):187–194. doi: 10.1016/0006-291x(71)90086-6. [DOI] [PubMed] [Google Scholar]
- Rubin C. S., Erlichman J., Rosen O. M. Cyclic adenosine 3',5'-monophosphate-dependent protein kinase of human erythrocyte membranes. J Biol Chem. 1972 Oct 10;247(19):6135–6139. [PubMed] [Google Scholar]
- SHIBKO S., TAPPEL A. L. Acid phosphatase of the lysosomal and soluble fraction of rat liver. Biochim Biophys Acta. 1963 May 7;73:76–86. doi: 10.1016/0006-3002(63)90361-5. [DOI] [PubMed] [Google Scholar]
- SINGER M. F., FRUTON J. S. Some properties of beef spleen phosphoamidase. J Biol Chem. 1957 Nov;229(1):111–119. [PubMed] [Google Scholar]
- SUNDARARAJAN T. A., SARMA P. S. Substrate specificity of phosphoprotein phosphatase from spleen. Biochem J. 1959 Mar;71(3):537–544. doi: 10.1042/bj0710537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tao M., Salas M. L., Lipmann F. Mechanism of activation by adenosine 3':5'-cyclic monophosphate of a protein phosphokinase from rabbit reticulocytes. Proc Natl Acad Sci U S A. 1970 Sep;67(1):408–414. doi: 10.1073/pnas.67.1.408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsung P. K., Hermina N., Weissmann G. Inosine 3',5'-monophosphate and adenosine 3',5'-monophosphate-dependent protein kinase from human PMN leucocytes. Biochem Biophys Res Commun. 1972 Dec 18;49(6):1657–1662. doi: 10.1016/0006-291x(72)90533-5. [DOI] [PubMed] [Google Scholar]
- Tsung P. K., Weissmann G. Inhibitor of adenosine 3',5'-monophosphate binding and protein kinase activity in leucocyte lysosomes. Biochem Biophys Res Commun. 1973 Apr 16;51(4):836–842. doi: 10.1016/0006-291x(73)90002-8. [DOI] [PubMed] [Google Scholar]
- Vreven J., Lieberherr M., Vaes G. The acid and alkaline phosphatases, inorganic pyrophosphatases and phosphoprotein phosphatase of bone. II. Distribution in subcellular fractions of bone tissue homogenates and structure-linked latency. Biochim Biophys Acta. 1973 Jan 12;293(1):170–177. doi: 10.1016/0005-2744(73)90388-4. [DOI] [PubMed] [Google Scholar]
- Weissmann G., Dukor P., Zurier R. B. Effect of cyclic AMP on release of lysosomal enzymes from phagocytes. Nat New Biol. 1971 Jun 2;231(22):131–135. doi: 10.1038/newbio231131a0. [DOI] [PubMed] [Google Scholar]
- Weissmann G., Zurier R. B., Hoffstein S. Leukocytic proteases and the immunologic release of lysosomal enzymes. Am J Pathol. 1972 Sep;68(3):539–564. [PMC free article] [PubMed] [Google Scholar]
- Zurier R. B., Hoffstein S., Weissmann G. Cytochalasin B: effect on lysosomal enzyme release from human leukocytes. Proc Natl Acad Sci U S A. 1973 Mar;70(3):844–848. doi: 10.1073/pnas.70.3.844. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zurier R. B., Hoffstein S., Weissmann G. Mechanisms of lysosomal enzyme release from human leukocytes. I. Effect of cyclic nucleotides and colchicine. J Cell Biol. 1973 Jul;58(1):27–41. doi: 10.1083/jcb.58.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zurier R. B., Weissmann G., Hoffstein S., Kammerman S., Tai H. H. Mechanisms of lysosomal enzyme release from human leukocytes. II. Effects of cAMP and cGMP, autonomic agonists, and agents which affect microtubule function. J Clin Invest. 1974 Jan;53(1):297–309. doi: 10.1172/JCI107550. [DOI] [PMC free article] [PubMed] [Google Scholar]
