Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1975 Mar;145(3):535–543. doi: 10.1042/bj1450535

Evolutionary variation between a monomer and a dimer arginine kinase. Purification of the enzyme from Holothuria forskali and a comparison of some properties with that from Homarus vulgaris.

E O Anosike, B H Moreland, D C Watts
PMCID: PMC1165254  PMID: 239687

Abstract

1. A purification procedure for the dimeric arginine kinase of the sea cucumber Holothuria forskali is described. 2. The enzyme has a mean molecular weight of 77250 and is composed of two equal, dissociable subunits. 3. It also shows co-operativity between substrate binding at one catalytic site to a much greater extent than the nomomeric lobster arginine kinase for which such co-operativity could not be detected unambiguously. The constants for substrate binding are reported assuming that the enzyme follows rapid-equilibrium random kinetics. From a comparison with other species, the development of co-operativity between the nucleotide- and guanidine-binding sites on one subunit is suggested to have occurred more than once in the evolution of the phosphagen kinases and is not dependent on subunit aggregation. 4. Both enzymes show similar pH profiles for thermal inactivation at 22 degrees C and have very similar stabilities. Above 40 degrees C the dimeric enzyme is much more stable than the monomer. Rate constants for heat inactivation and Arrhenius activation energies are reported. 5. The dimeric enzyme is also more stable to urea inactivation. Substrates and argininic acid all improve the stability of both enzymes. The effects of individual substrates are more distincitive with the dimeric enzymes and increase its stability to an extent that makes it about as stable as dogfish creatine kinase. In the physiological range dimerization does not seem to confer any particular advantage with respect to stability over the monomer form.

Full text

PDF
535

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J. 1965 Sep;96(3):595–606. doi: 10.1042/bj0960595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blethen S. L., Kaplan N. O. Purification of arginine kinase from lobster and a study of some factors affecting its reactivation. Biochemistry. 1967 May;6(5):1413–1421. doi: 10.1021/bi00857a025. [DOI] [PubMed] [Google Scholar]
  3. Blethen S. L. Kinetic properties of the arginine kinase isoenzymes of Limulus polyphemus. Arch Biochem Biophys. 1972 Mar;149(1):244–251. doi: 10.1016/0003-9861(72)90319-0. [DOI] [PubMed] [Google Scholar]
  4. CHANDLER A. M., MOORE R. O. GLYCOGEN DEPOSITION IN ADIPOSE TISSUE: VARIATIONS IN LEVELS OF GLYCOGEN-CYCLE ENZYMES DURING FASTING AND REFEEDING. Arch Biochem Biophys. 1964 Nov;108:183–192. doi: 10.1016/0003-9861(64)90374-1. [DOI] [PubMed] [Google Scholar]
  5. Cheung A. C. Kinetic properties of arginine phosphokinase from honeybees, Apis mellifera L. (Hymenoptera, Apidae). Arch Biochem Biophys. 1973 Jan;154(1):28–39. doi: 10.1016/0003-9861(73)90031-3. [DOI] [PubMed] [Google Scholar]
  6. Eggleton P., Eggleton G. P. The Inorganic Phosphate and a Labile Form of Organic Phosphate in the Gastrocnemius of the Frog. Biochem J. 1927;21(1):190–195. doi: 10.1042/bj0210190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gosselin-Rey C., Gerday C. Isolation and molecular properties of creatine kinase from carp white muscle. Biochim Biophys Acta. 1970 Nov 17;221(2):241–254. doi: 10.1016/0005-2795(70)90264-3. [DOI] [PubMed] [Google Scholar]
  8. KUBY S. A., NODA L., LARDY H. A. Adenosinetriphosphate-creatine transphosphorylase. I. Isolation of the crystalline enzyme from rabbit muscle. J Biol Chem. 1954 Jul;209(1):191–201. [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Moreland B., Watts D. C., Virden R. Phosphagen kinases and evolution in the echinodermata. Nature. 1967 Apr 29;214(5087):458–462. doi: 10.1038/214458a0. [DOI] [PubMed] [Google Scholar]
  11. O'Sullivan W. J., Virden R., Blethen S. Magnetic resonance and kinetic studies on the manganese activated arginine kinase reaction. Eur J Biochem. 1969 Apr;8(4):562–570. doi: 10.1111/j.1432-1033.1969.tb00564.x. [DOI] [PubMed] [Google Scholar]
  12. PRADEL L. A., KASSAB R., REGNOUF F., NGUYENVAN THOAI SITES ACTIFS DE L'ATP: ARGININE PHOSPHOTRANSF'ERASE. Biochim Biophys Acta. 1964 Aug 26;89:255–265. [PubMed] [Google Scholar]
  13. Robin Y., Klotz C., Nguyen-Van-Thoai Unspecific arginine kinase of molecular weight 150000. Eur J Biochem. 1971 Jul 29;21(2):170–178. doi: 10.1111/j.1432-1033.1971.tb01453.x. [DOI] [PubMed] [Google Scholar]
  14. Roustan C., Kassab R., Pradel L. A., van Thoai N. Interaction des ATP: guanidine phosphotransférases avec leurs substrats, étudiée par spectrophotometrie différentielle. Biochim Biophys Acta. 1968 Oct 8;167(2):326–338. doi: 10.1016/0005-2744(68)90212-x. [DOI] [PubMed] [Google Scholar]
  15. Roustan C., Pradel L. A., Kassab R., Fattoum A., Thoai N. V. Spectrophotometric investigations of the interaction of native and chemically modified ATP: guanidinophosphotransferases with their substrates. Biochim Biophys Acta. 1970 Jun 10;206(3):369–379. doi: 10.1016/0005-2744(70)90153-1. [DOI] [PubMed] [Google Scholar]
  16. Roustan C., Pradel L. A., Kassab R., Van Thoai N. Studies on the partial exchange and overall reactions catalyzed by native and modified arginine kinase from Homarus vulgaris muscle. Biochim Biophys Acta. 1971 Oct;250(1):103–116. doi: 10.1016/0005-2744(71)90124-0. [DOI] [PubMed] [Google Scholar]
  17. Simonarson B., Watts D. C. Purification and properties of adenosine triphosphate-creatine phosphotransferase from muscle of the dogfish Scylliorhinus canicula. Biochem J. 1972 Aug;128(5):1241–1253. doi: 10.1042/bj1281241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Smith E., Morrison J. F. Kinetic studies on the arginine kinase reaction. J Biol Chem. 1969 Aug 10;244(15):4224–4234. [PubMed] [Google Scholar]
  19. VIRDEN R., WATTS D. C., BALDWIN E. ADENOSINE 5'-TRIPHOSPHATE-ARGININE PHOSPHOTRANSFERASE FROM LOBSTER MUSCLE: PURIFICATION AND PROPERTIES. Biochem J. 1965 Mar;94:536–544. doi: 10.1042/bj0940536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Virden R., Watts D. C., Watts R. L., Gammack D. B., Raper J. H. Adenosine 5'-triphosphate-arginine phosphotransferase from lobster muscle. Molecular weight. Biochem J. 1966 Apr;99(1):155–158. doi: 10.1042/bj0990155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Watts D. C., Focant B., Moreland B. M., Watts R. L. Formation of a hybrid enzyme between echinoderm arginine kinase and mammalian creatine kinase. Nat New Biol. 1972 May 10;237(71):51–53. doi: 10.1038/newbio237051a0. [DOI] [PubMed] [Google Scholar]
  22. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  23. Yue R. H., Jacobs H. K., Okabe K., Keutel H. J., Kuby S. A. Studies on adenosine triphosphate transphosphorylases. 8. Homogeneity and physicochemical properties of the crystalline adenosine triphosphate--creatine transphosphorylase from calf brain. Biochemistry. 1968 Dec;7(12):4291–4298. doi: 10.1021/bi00852a021. [DOI] [PubMed] [Google Scholar]
  24. van Thoai N., Robin Y., Guillou Y. A new phosphagen, N'-phosphorylguanidinoethylphospho-O-( -N,N-dimethyl)serine (phosphothalassemine). Biochemistry. 1972 Oct 10;11(21):3890–3895. doi: 10.1021/bi00771a009. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES