Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1975 Jan;146(1):17–24. doi: 10.1042/bj1460017

Some observations on chlorophyll(ide) synthesis by isolated etioplasts.

W T Griffiths
PMCID: PMC1165271  PMID: 1147896

Abstract

1. A modified procedure for the isolation of etioplasts from dark-grown barley is described and the regeneration of phototransformable protchlorophyll(ide) was demonstrated in the isolated plastids. 2. On exposure of the etioplasts to a long-term flash illumination, chlorophyll(ide) synthesis from a precursor pool, which includes all the protochlorophyllide, was demonstrated. 3. Added delta-aminolaevulinic acid failed to be significantly incorporated into chlorophyll(ide) in the etioplasts despite its extensive incorporation into porphyrin precursors of chlorophyll and haem compounds. The findings are discussed in terms of the inability of etioplasts to carry out the metal-insertion step in chlorophyll synthesis. 4. An elevated chlorophyll(ide) concentration was attained in the etioplasts by increasing the size of the utilizable precursor pool by pre-feeding whole plants with delta-aminolaevulinic acid, isolating the etioplasts and subjecting them to the flash illumination.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOARDMAN N. K. Studies on a protochlorophyll-protein complex. II. The photo-conversion of protochlorophyll to chlorophyll alpha in the isolated complex. Biochim Biophys Acta. 1962 Oct 22;64:279–293. doi: 10.1016/0006-3002(62)90737-0. [DOI] [PubMed] [Google Scholar]
  2. Forger J. M., Bogorad L. Steps in the acquisition of photosynthetic competence by plastids of maize. Plant Physiol. 1973 Nov;52(5):491–497. doi: 10.1104/pp.52.5.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gassman M. L. The Conversion of Photoinactive Protochlorophyllide(633) to Phototransformable Protochlorophyllide(650) in Etiolated Bean Leaves Treated with delta-Aminolevulinic Acid. Plant Physiol. 1973 Dec;52(6):590–594. doi: 10.1104/pp.52.6.590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Good N. E., Winget G. D., Winter W., Connolly T. N., Izawa S., Singh R. M. Hydrogen ion buffers for biological research. Biochemistry. 1966 Feb;5(2):467–477. doi: 10.1021/bi00866a011. [DOI] [PubMed] [Google Scholar]
  5. Gorchein A. Control of magnesium-protoporphyrin chelatase activity in Rhodopseudomonas spheroides. Role of light, oxygen, and electron and energy transfer. Biochem J. 1973 Aug;134(4):833–845. doi: 10.1042/bj1340833d. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Henningsen K. W., Boardman N. K. Development of Photochemical Activity and the Appearance of the High Potential Form of Cytochrome b-559 in Greening Barley Seedlings. Plant Physiol. 1973 Jun;51(6):1117–1126. doi: 10.1104/pp.51.6.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hiller R. G., Boardman N. K. Light driven redox changes of cytochrome f and the development of photosystems I and II during greening of bean leaves. Biochim Biophys Acta. 1971 Dec 7;253(2):449–458. doi: 10.1016/0005-2728(71)90048-x. [DOI] [PubMed] [Google Scholar]
  8. Jones O. T. Multiple light-induced reactions of cytochromes b and c in Rhodopseudomonas spheroides. Biochem J. 1969 Oct;114(4):793–799. doi: 10.1042/bj1140793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jones O. T., Saunders V. A. Energy-linked electron transfer reactions in Rhodopseudomonas viridis. Biochim Biophys Acta. 1972 Sep 20;275(3):427–436. doi: 10.1016/0005-2728(72)90223-x. [DOI] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Mathis P., Sauer K. Chlorophyll Formation in Greening Bean Leaves during the Early Stages. Plant Physiol. 1973 Jan;51(1):115–119. doi: 10.1104/pp.51.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mathis P., Sauer K. Circular dichroism studies on the structure and the photochemistry of protochlorophyllide and chlorophyllide holochrome. Biochim Biophys Acta. 1972 Jun 23;267(3):498–511. doi: 10.1016/0005-2728(72)90178-8. [DOI] [PubMed] [Google Scholar]
  13. Plesnicar M., Bendall D. S. The photochemical activities and electron carriers of developing barley leaves. Biochem J. 1973 Nov;136(3):803–812. doi: 10.1042/bj1360803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rebeiz C. A., Castelfranco P. A. Chlorophyll biosynthesis in a cell-free system from higher plants. Plant Physiol. 1971 Jan;47(1):33–37. doi: 10.1104/pp.47.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rebeiz C. A., Castelfranco P. A. Protochlorophyll biosynthesis in a cell-free system from higher plants. Plant Physiol. 1971 Jan;47(1):24–32. doi: 10.1104/pp.47.1.24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rebeiz C. A., Crane J. C., Nishijima C. The biosynthesis of metal porphyrins by subchloroplastic fractions. Plant Physiol. 1972 Jul;50(1):185–186. doi: 10.1104/pp.50.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rebeiz C. A., Larson S., Weier T. E., Castelfranco P. A. Chloroplast maintenance and partial differentiation in vitro. Plant Physiol. 1973 Apr;51(4):651–659. doi: 10.1104/pp.51.4.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. SIRONVAL C., MICHEL-WOLWERTZ M. R., MADSEN A. ON THE NATURE AND POSSIBLE FUNCTIONS OF THE 673- AND 684-MU FORMS IN VIVO OF CHLOROPHYLL. Biochim Biophys Acta. 1965 Mar 29;94:344–354. doi: 10.1016/0926-6585(65)90043-9. [DOI] [PubMed] [Google Scholar]
  19. Schultz A., Sauer K. Circular dichroism and fluorescence changes accompanying the protochylorophyllide to chlorophyllide transformation in greening leaves and holochrome preparations. Biochim Biophys Acta. 1972 May 25;267(2):320–340. doi: 10.1016/0005-2728(72)90120-x. [DOI] [PubMed] [Google Scholar]
  20. Wellburn F. A., Wellburn A. R. Chlorophyll synthesis by isolated intact etioplasts. Biochem Biophys Res Commun. 1971 Nov 5;45(3):747–750. doi: 10.1016/0006-291x(71)90480-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES