Abstract
1. Measurements were made at 12 degrees K of the electron-paramagnetic-resonance (e.p.r.) spectra of submitochondrial particles from Candida utilis cells grown under conditions that alter the amount of the mitochondrial NADH dehydrogenase (EC 1.6.99.3). 2. Iron-limited growth decreases the extent of iron-sulphur e.p.r. signals to undetectable values that are less than 1 percent of those normally found with glycerol-limited growth. 3. Small but significant signals attributable to the NADH dehydrogenase were detected in submitochondrial particles from sulphate-limited cells. 4. Measurements made on submitochondrial particles prepared from these and other phenotypically modified cells lead us to conclude that the presence of low-temperature e.p.r.-detectable iron-sulphur centres attributable to the NADH dehydrogenase are necessary but not sufficient for the coupling of ATP synthesis to the NADH dehydrogenase reaction in the mitochondrial membrane of C. utilis. 6. The amplitude of the g=2.01 signal observed in non-reduced submitochondrial particles is approximately tenfold diminished by iron limitation but not significantly altered by sulphate limitation.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Clegg R. A., Garland P. B. Non-haem iron and the dissociation of piericidin A sensitivity from site 1 energy conservation in mitochondria from Torulopsis utilis. Biochem J. 1971 Aug;124(1):135–151. doi: 10.1042/bj1240135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clegg R. A., Light P. A. Growth yields of Torulopsis utilis grown in continuous culture with glycerol or iron as the growth-limiting nutrient. Biochem J. 1971 Aug;124(1):152–154. doi: 10.1042/bj1240152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clegg R. A., Ragan C. I., Haddock B. A., Light P. A., Garland P. B., Swann J. C., Bray R. C. Inter-relationships between mitochondrial energy conservation at site I, piericidin a sensitivity, and EPR spectra in torulopsis utilis. FEBS Lett. 1969 Nov 12;5(3):207–210. doi: 10.1016/0014-5793(69)80333-9. [DOI] [PubMed] [Google Scholar]
- Cobley J. G., Grossman S., Beinert H., Singer T. P. Catalytic activity and EPR signals of DPNH dehydrogenase in relation to the acquisition and loss of piericidin sensitivity and of coupling site 1. Biochem Biophys Res Commun. 1973 Aug 21;53(4):1273–1281. doi: 10.1016/0006-291x(73)90603-7. [DOI] [PubMed] [Google Scholar]
- Dervartanian D. V., Morgan T. V., Brantner R. V. EPR studies by 57Fe isotopic substitution on the nature of an unknown electron acceptor in Azotobacter vinelandii phosphorylating particles. Biochim Biophys Acta. 1974 Jun 28;347(3):497–502. doi: 10.1016/0005-2728(74)90088-7. [DOI] [PubMed] [Google Scholar]
- Downie J. A., Garland P. B. An antimycin A- and cyanide-resistant variant of Candida utilis arising during copper-limited growth. Biochem J. 1973 Aug;134(4):1051–1061. doi: 10.1042/bj1341051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghosh A. K., Bhattacharyya S. N. Studies on yeast mitochondria. Some properties of mitochondria isolated from Saccharomyces carlsbergensis grown in normal glucose medium. Biochim Biophys Acta. 1971 Sep 7;245(2):335–346. doi: 10.1016/0005-2728(71)90152-6. [DOI] [PubMed] [Google Scholar]
- Haddock B. A., Garland P. B. Effect of sulphate-limited growth on mitochondrial electron transfer and energy conservation between reduced nicotinamide-adenine dinucleotide and the cytochromes in Torulopsis utilis. Biochem J. 1971 Aug;124(1):155–170. doi: 10.1042/bj1240155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imai K., Asano A., Sato R. Oxidative phosphorylation in Micrococcus denitrificans. V. Effects of iron deficiency on respiratory components and oxidative phosphorylation. J Biochem. 1968 Feb;63(2):219–225. doi: 10.1093/oxfordjournals.jbchem.a128764. [DOI] [PubMed] [Google Scholar]
- Light P. A., Garland P. B. A comparison of mitochondria from Torulopsis utilis grown in continuous culture with glycerol, iron, ammonium, magnesium or phosphate as the growth-limiting nutrient. Biochem J. 1971 Aug;124(1):123–134. doi: 10.1042/bj1240123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Light P. A., Ragan C. I., Clegg R. A., Garland P. B. Iron-limited growth of torulopsis utilis, and the reversible loss of mitochondrial energy conservation at site 1 and of sensitivity to rotenone and piericidin A. FEBS Lett. 1968 Jul;1(1):4–8. doi: 10.1016/0014-5793(68)80004-3. [DOI] [PubMed] [Google Scholar]
- Lowe D. J., Lynden-Bell R. M., Bray R. C. Spin-spin interaction between molybdenum and one of the iron-sulphur systems of xanthine oxidase and its relevance to the enzymic mechanism. Biochem J. 1972 Nov;130(1):239–249. doi: 10.1042/bj1300239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mackler B., Haynes B. Studies of oxidation phosphorylation in Saccharomyces cerevisiae and Saccharomyces carlsbergensis. Biochim Biophys Acta. 1973 Jan 18;292(1):88–91. doi: 10.1016/0005-2728(73)90253-3. [DOI] [PubMed] [Google Scholar]
- Ohnishi T., Asakura T., Wilson D. F., Chance B. The oxidation-reduction potentials of iron-sulfur centers in the site I region of the respiratory chain in C. utilis submitochondrial particles. FEBS Lett. 1972 Mar;21(1):59–62. doi: 10.1016/0014-5793(72)80163-7. [DOI] [PubMed] [Google Scholar]
- Ohnishi T., Asakura T., Wohlrab H., Yonetani T., Chance B. Electron paramagnetic resonance studies on iron-sulfur proteins of submitochondrial particles from Candida utilis cells. J Biol Chem. 1970 Feb 25;245(4):901–902. [PubMed] [Google Scholar]
- Ohnishi T. Factors controlling the occurrence of site I phosphorylation in C. utilis mitochondria. FEBS Lett. 1972 Aug 15;24(3):305–309. doi: 10.1016/0014-5793(72)80378-8. [DOI] [PubMed] [Google Scholar]
- Ohnishi T., Panebianco P., Chance B. Studies on site I phosphorylation, EPR detectable iron-sulfur proteins and piericidin A sensitivity in the in vivo induction system of Candida utilis cells. Biochem Biophys Res Commun. 1972 Oct 6;49(1):99–106. doi: 10.1016/0006-291x(72)90014-9. [DOI] [PubMed] [Google Scholar]
- Ohnishi T., Schleyer H., Chance B. Studies on non-heme iron proteins and the piericidin A binding site of submitochondrial particles from Candida utilis cells grown in media of varying iron concentrations. Biochem Biophys Res Commun. 1969 Aug 7;36(3):487–493. doi: 10.1016/0006-291x(69)90591-9. [DOI] [PubMed] [Google Scholar]
- Onishi T., Asakura T., Yonetani T., Chance B. Electron paramagnetic resonance studies at temperatures below 77 degrees K on iron-sulfur proteins of yeast and bovine heart submitochondrial particles. J Biol Chem. 1971 Oct 10;246(19):5960–5964. [PubMed] [Google Scholar]
- Onishi T. Induction of the site I phosphorylation in vivo in Saccharomyces carlsbergensis. Biochem Biophys Res Commun. 1970 Oct 23;41(2):344–352. doi: 10.1016/0006-291x(70)90510-3. [DOI] [PubMed] [Google Scholar]
- Onishi T. Mechanism of electron transport and energy conservation in the site I region of the respiratory chain. Biochim Biophys Acta. 1973 Dec 7;301(2):105–128. [PubMed] [Google Scholar]
- Orme-Johnson N. R., Orme-Johnson W. H., Hansen R. E., Beinert H., Hatefi Y. EPR detectable electron acceptors in submitochondrial particles from beef heart with special reference to the iron-sulfur components of DPNH-ubiquinone reductase. Biochem Biophys Res Commun. 1971 Jul 16;44(2):446–452. doi: 10.1016/0006-291x(71)90621-8. [DOI] [PubMed] [Google Scholar]
- Ragan C. I., Garland P. B. Spectroscopic studies of flavoproteins and non-haem iron proteins of submitochondrial particles of Torulopsis utilis modified by iron- and sulphate-limited growth in continuous culture. Biochem J. 1971 Aug;124(1):171–187. doi: 10.1042/bj1240171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruzicka F. J., Beinert H. A mitochondrial iron protein with properties of a high-potential iron-sulfur protein. Biochem Biophys Res Commun. 1974 Jun 4;58(3):556–563. doi: 10.1016/s0006-291x(74)80456-0. [DOI] [PubMed] [Google Scholar]
- Schatz G., Racker E. Stable phosphorylating submitochondrial particles from baker's yeast. Biochem Biophys Res Commun. 1966 Mar 8;22(5):579–584. doi: 10.1016/0006-291x(66)90314-7. [DOI] [PubMed] [Google Scholar]
- Schatz G., Racker E., Tyler D. D., Gonze J., Estabrook R. W. Studies of the DPNH-cytochrome b segment of the respiratory chain of baker's yeast. Biochem Biophys Res Commun. 1966 Mar 8;22(5):585–590. doi: 10.1016/0006-291x(66)90315-9. [DOI] [PubMed] [Google Scholar]
- Singer T. P., Gutman M. The DPNH dehydrogenase of the mitochondrial respiratory chain. Adv Enzymol Relat Areas Mol Biol. 1971;34:79–153. doi: 10.1002/9780470122792.ch3. [DOI] [PubMed] [Google Scholar]
- Swann J. C., Bray R. C. Multiple phases in the reduction of xanthine oxidase by substrates. Eur J Biochem. 1972 Apr 11;26(3):407–415. doi: 10.1111/j.1432-1033.1972.tb01781.x. [DOI] [PubMed] [Google Scholar]
