Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1975 Jan;146(1):277–279. doi: 10.1042/bj1460277

Hydroxypyruvate as a gluconeogenic substrate in rat hepatocytes.

D H Williamson, E V Ellington
PMCID: PMC1165298  PMID: 1147901

Abstract

At concentrations of 2mM and above hydroxypyruvate produced no glucose with isolated rat liver cells, although it was rapidly utilized. At a lower concentration of hydroxypyruvate or in the presence of substrates which generate reducing equivalents (ethanol or butyrate), appreciable amounts of glucose were formed from hydroxypyruvate. A possible explanation for this phenomenon is discussed.

Full text

PDF
277

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berry M. N., Friend D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. doi: 10.1083/jcb.43.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cornell N. W., Lund P., Hems R., Krebs H. A. Acceleration of gluconeogenesis from lactate by lysine (Short Communication). Biochem J. 1973 Jun;134(2):671–672. doi: 10.1042/bj1340671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cornell N. W., Lund P., Krebs H. A. The effect of lysine on gluconeogenesis from lactate in rat hepatocytes. Biochem J. 1974 Aug;142(2):327–337. doi: 10.1042/bj1420327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DAWKINS P. D., DICKENS F. THE OXIDATION OF D- AND L-GLYCERATE BY RAT LIVER. Biochem J. 1965 Feb;94:353–367. doi: 10.1042/bj0940353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DICKENS F., WILLIAMSON D. H. Metabolism of D- and L-[3-14C]glycerate by liver tissue of the rat. Biochem J. 1960 Nov;77:356–363. doi: 10.1042/bj0770356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DICKENS F., WILLIAMSON D. H. Studies on the metabolism of hydroxypyruvate in animal tissues. Biochem J. 1959 Jul;72:496–508. doi: 10.1042/bj0720496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Garrison J. C., Haynes R. C., Jr Hormonal control of glycogenolysis and gluconeogenesis in isolated rat liver cells. J Biol Chem. 1973 Aug 10;248(15):5333–5343. [PubMed] [Google Scholar]
  8. MEISTER A. Enzymatic preparation of alpha-keto acids. J Biol Chem. 1952 May;197(1):309–317. [PubMed] [Google Scholar]
  9. Rowsell E. V., al-Tai A. H., Carnie J. A. Increased liver L-serine-pyruvate aminotransferase activity under gluconeogenic conditions. Biochem J. 1973 May;134(1):349–351. doi: 10.1042/bj1340349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. STAFFORD H. A., MAGALDI A., VENNESLAND B. The enzymatic reduction of hydroxypyruvic acid to D-glyceric acid in higher plants. J Biol Chem. 1954 Apr;207(2):621–629. [PubMed] [Google Scholar]
  11. Sallach H. J., Sanborn T. A., Bruin W. J. Dietary and hormonal regulation of hepatic biosynthetic and catabolic enzymes of serine metabolism in rats. Endocrinology. 1972 Oct;91(4):1054–1063. doi: 10.1210/endo-91-4-1054. [DOI] [PubMed] [Google Scholar]
  12. Sandoval I. V., Sols A. Gluconeogenesis from serine by the serine-dehydratase-dependent pathway in rat liver. Eur J Biochem. 1974 Apr 16;43(3):609–616. doi: 10.1111/j.1432-1033.1974.tb03448.x. [DOI] [PubMed] [Google Scholar]
  13. Snell K. Pathways of gluconeogenesis from L-serine in the neonatal rat. Biochem J. 1974 Aug;142(2):433–436. doi: 10.1042/bj1420433. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES