Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1975 Feb;146(2):497–499. doi: 10.1042/bj1460497

Subcellular localization of pulmonary antiotensin-converting enzyme (kininase II).

J W Ryan, U S Ryan, D R Schultz, C Whitaker, A Chung
PMCID: PMC1165329  PMID: 168877

Abstract

Goat antibodies to pig lung angiotensin-converting enzyme (kininase II) were conjugated to microperoxidase. Rat lung tissue, previously incubated with non-immune goat serum, was incubated with the antibody-microperoxidase conjugate and then with H2O2 and 3,3-diaminobenzidine. Electron microscopy revealed reaction product on the plasma membrane and caveolae of endothelial cells, especially those of capillaries and venules. These results support the hypothesis that angiotensin I and bradykinin are metabolized by enzymes on the luminal surface of pulmonary endothelial cells.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avrameas S. Coupling of enzymes to proteins with glutaraldehyde. Use of the conjugates for the detection of antigens and antibodies. Immunochemistry. 1969 Jan;6(1):43–52. doi: 10.1016/0019-2791(69)90177-3. [DOI] [PubMed] [Google Scholar]
  2. Dorer F. E., Kahn J. R., Lentz K. E., Levine M., Skeggs L. T. Hydrolysis of bradykinin by angiotensin-converting enzyme. Circ Res. 1974 Jun;34(6):824–827. doi: 10.1161/01.res.34.6.824. [DOI] [PubMed] [Google Scholar]
  3. Dorer F. E., Kahn J. R., Lentz K. E., Levine M., Skeggs L. T. Purification and properties of angiotensin-converting enzyme from hog lung. Circ Res. 1972 Sep;31(3):356–366. doi: 10.1161/01.res.31.3.356. [DOI] [PubMed] [Google Scholar]
  4. Feder N. Microperoxidase. An ultrastructural tracer of low molecular weight. J Cell Biol. 1971 Oct;51(1):339–343. doi: 10.1083/jcb.51.1.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. PEACHEY L. D. Thin sections. I. A study of section thickness and physical distortion produced during microtomy. J Biophys Biochem Cytol. 1958 May 25;4(3):233–242. doi: 10.1083/jcb.4.3.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ryan J. W., Niemeyer R. S., Goodwin D. W., Smith U. Metabolism of [8-L-[14C] phenylalanine]-angiotensin I in the pulmonary circulation. Biochem J. 1971 Dec;125(3):921–923. doi: 10.1042/bj1250921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ryan J. W., Smith U. Metabolism of adenosine 5'-monophosphate during circulation through the lungs. Trans Assoc Am Physicians. 1971;84:297–306. [PubMed] [Google Scholar]
  8. Ryan J. W., Smith U., Niemeyer R. S. Angiotensin I: metabolism by plasma membrane of lung. Science. 1972 Apr 7;176(4030):64–66. doi: 10.1126/science.176.4030.64. [DOI] [PubMed] [Google Scholar]
  9. Smith U., Ryan J. W. Electron microscopy of endothelial and epithelial components of the lungs: correlations of structure and function. Fed Proc. 1973 Sep;32(9):1957–1966. [PubMed] [Google Scholar]
  10. Stefanini M., De Martino C., Zamboni L. Fixation of ejaculated spermatozoa for electron microscopy. Nature. 1967 Oct 14;216(5111):173–174. doi: 10.1038/216173a0. [DOI] [PubMed] [Google Scholar]
  11. Yang H. Y., Erdös E. G., Levin Y. Characterization of a dipeptide hydrolase (kininase II: angiotensin I converting enzyme). J Pharmacol Exp Ther. 1971 Apr;177(1):291–300. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES