Abstract
1. Beta-Phenylpropionylthiocholine and N-(5-aminopentyl)-5-dimethylaminonaphthalene-1-sulphonamide (dansylcadaverine) serve as a pair of water-soluble (pH7.5) model substrates for transamidating enzymes. Amide formation could be followed directly through fluorescence measurements by monitoring the continuous extraction of the water-soluble coupling product, N-(beta-phenylpropionyl)dansylcadaverine, into n-heptane. By this procedure, the steady-state kinetics of glutamine-lysine endo-gamma-glutamyltransferase from human plasma (fibrinoligase, thrombin- and Ca2+-activated blood coagulation Factor XII) and from guinea-pig liver (liver transglutaminase) were investigated at 25 degrees C. 2. With beta-phenylpropionylthiocholine as the varied substrate, Lineweaver-Burk plots with various concentrations of dansylcadaverine intercept on the horizontal axis, suggesting that formation of the acyl-enzyme is rate limiting. 3. On the basis of functional normality of active sites, kcat. values of 1.8 s(-1) and 0.9 s(-1) were obtained for the plasma and liver gamma-glutamyltransferase respectively. The two enzymes show identical affinities for the first substrate, beta-phenylpropionylthiocholine, with Ka 4 times 10(-4) M. 4. Utilization of the second substrate, dansylcadaverine, appears to be an order of magnitude more efficient with the liver enzyme. 5. N-(5-Amino-3-thiapentyl)-5-dimethylaminonaphthalene-1-sulphonamide (dansylthiacadaverine) could be used instead of dansylcadaverine in the fluorescent kinetic system. 6. Competitive inhibition by a non-fluorescent amine substrate histamine was also evaluated.
Full text
PDF![155](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9adb/1165385/7764846dbebf/biochemj00561-0163.png)
![156](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9adb/1165385/46afa9225457/biochemj00561-0164.png)
![157](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9adb/1165385/02bc16cf473e/biochemj00561-0165.png)
![158](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9adb/1165385/b477ade0df4e/biochemj00561-0166.png)
![159](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9adb/1165385/1038fe992e83/biochemj00561-0167.png)
![160](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9adb/1165385/477140ac9c15/biochemj00561-0168.png)
![161](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9adb/1165385/7692454c1743/biochemj00561-0169.png)
![162](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9adb/1165385/f202778a84d7/biochemj00561-0170.png)
![163](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9adb/1165385/1136162e55d0/biochemj00561-0171.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chung S. I., Folk J. E. Kinetic studies with transglutaminases. The human blood enzymes (activated coagulation factor 13 and the guinea pig hair follicle enzyme. J Biol Chem. 1972 May 10;247(9):2798–2807. [PubMed] [Google Scholar]
- Chung S. I., Lewis M. S., Folk J. E. Relationships of the catalytic properties of human plasma and platelet transglutaminases (activated blood coagulation factor XIII) to their subunit structures. J Biol Chem. 1974 Feb 10;249(3):940–950. [PubMed] [Google Scholar]
- Chung S. I., Shrager R. I., Folk J. E. Mechanism of action of guinea pig liver transglutaminase. VII. Chemical and stereochemical aspects of substrate binding and catalysis. J Biol Chem. 1970 Dec 10;245(23):6424–6435. [PubMed] [Google Scholar]
- Curtis C. G., Stenberg P., Brown K. L., Baron A., Chen K., Gray A., Simpson I., Lorand L. Kinetics of transamidating enzymes. Production of thiol in the reactions of thiol esters with fibrinoligase. Biochemistry. 1974 Jul 30;13(16):3257–3262. doi: 10.1021/bi00713a012. [DOI] [PubMed] [Google Scholar]
- Curtis C. G., Stenberg P., Chou C. H., Gray A., Brown K. L., Lorand L. Titration and subunit localization of active center cysteine in fibrinoligase (thrombin-activated fibrin stabilizing fector). Biochem Biophys Res Commun. 1973 May 1;52(1):51–56. doi: 10.1016/0006-291x(73)90952-2. [DOI] [PubMed] [Google Scholar]
- Deranleau D. A., Neurath H. The combination of chymotrypsin and chymotrypsinogen with fluorescent substrates and inhibitors for chymotrypsin. Biochemistry. 1966 Apr;5(4):1413–1425. doi: 10.1021/bi00868a040. [DOI] [PubMed] [Google Scholar]
- Folk J. E., Cole P. W. Mechanism of action of guinea pig liver transglutaminase. I. Purification and properties of the enzyme: identification of a functional cysteine essential for activity. J Biol Chem. 1966 Dec 10;241(23):5518–5525. [PubMed] [Google Scholar]
- Folk J. E., Cole P. W., Mullooly J. P. Mechanism of action of guinea pig liver transglutaminase. IV. The trimethylacyl enzyme. J Biol Chem. 1967 Oct 10;242(19):4329–4333. [PubMed] [Google Scholar]
- Folk J. E. Structure and catalytic properties of hepatic transglutaminase. Ann N Y Acad Sci. 1972 Dec 8;202:59–76. doi: 10.1111/j.1749-6632.1972.tb16322.x. [DOI] [PubMed] [Google Scholar]
- Holbrook J. J., Cooke R. D., Kingston I. B. The amino acid sequence around the reactive cysteine residue in human plasma Factor XII. Biochem J. 1973 Dec;135(4):901–903. doi: 10.1042/bj1350901. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ljunggren C., Hoffmann K. J., Stenberg P., Svensson U., Nilsson J. L., Hartkoorn A., Lundén R. Fibrin-stabilizing factor inhibitors. 11. Monodansylated weak aliphatic diamines. J Med Chem. 1974 Jun;17(6):649–651. doi: 10.1021/jm00252a017. [DOI] [PubMed] [Google Scholar]
- Lorand L., Campbell-Wilkes L. K., Cooperstein L. A filter paper assay for transamidating enzymes using radioactive amine substrates. Anal Biochem. 1972 Dec;50(2):623–631. doi: 10.1016/0003-2697(72)90074-7. [DOI] [PubMed] [Google Scholar]
- Lorand L., Chenoweth D., Gray A. Titration of the acceptor cross-linking sites in fibrin. Ann N Y Acad Sci. 1972 Dec 8;202:155–171. doi: 10.1111/j.1749-6632.1972.tb16328.x. [DOI] [PubMed] [Google Scholar]
- Lorand L., Chou C. H., Simpson I. Thiolester substrates for transamidating enzymes: studies on fibrinoligase. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2645–2648. doi: 10.1073/pnas.69.9.2645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lorand L. Fibrinoligase: the fibrin-stabilizing factor system of blood plasma. Ann N Y Acad Sci. 1972 Dec 8;202:6–30. doi: 10.1111/j.1749-6632.1972.tb16319.x. [DOI] [PubMed] [Google Scholar]
- Lorand L., Gray A. J., Brown K., Credo R. B., Curtis C. G., Domanik R. A., Stenberg P. Dissociation of the subunit structure of fibrin stabilizing factor during activation of the zymogen. Biochem Biophys Res Commun. 1974 Feb 27;56(4):914–922. doi: 10.1016/s0006-291x(74)80275-5. [DOI] [PubMed] [Google Scholar]
- Lorand L., Rule N. G., Ong H. H., Furlanetto R., Jacobsen A., Downey J., Oner N., Bruner-Lorand J. Amine specificity in transpeptidation. Inhibition of fibrin cross-linking. Biochemistry. 1968 Mar;7(3):1214–1223. doi: 10.1021/bi00843a043. [DOI] [PubMed] [Google Scholar]
- Lorand L., Urayama T., Atencio A. C., Hsia D. Y. Inheritance of deficiency of fibrin-stabilizing factor (factor 13). Am J Hum Genet. 1970 Jan;22(1):89–95. [PMC free article] [PubMed] [Google Scholar]
- McDonagh J., Wagner R. H. Site of synthesis of plasma and platelet factor XIII. Ann N Y Acad Sci. 1972 Dec 8;202:31–40. doi: 10.1111/j.1749-6632.1972.tb16320.x. [DOI] [PubMed] [Google Scholar]
- Nilsson J. L., Stenberg P., Ljunggren C., Eriksson O., Lundén R. Fibrin-stabilizing factor inhibitors. 3. Sulphonamides related to monodansylcadaverine. Acta Pharm Suec. 1971 Nov;8(5):497–504. [PubMed] [Google Scholar]
- Schwartz M. L., Pizzo S. V., Hill R. L., McKee P. A. Human Factor XIII from plasma and platelets. Molecular weights, subunit structures, proteolytic activation, and cross-linking of fibrinogen and fibrin. J Biol Chem. 1973 Feb 25;248(4):1395–1407. [PubMed] [Google Scholar]
- Schwartz M. L., Pizzo S. V., Hill R. L., McKee P. A. The subunit structures of human plasma and platelet factor XIII (fibrin-stabilizing factor). J Biol Chem. 1971 Sep 25;246(18):5851–5854. [PubMed] [Google Scholar]