Abstract
Ferrocytochrome c has been shown to bind two molecules of CO at pH 14. The second CO is thought to be bound only when the cytochrome c molecule is denatured, and once bound appears to be spectrally silent. Insolubilization of native cytochrome c prevents the binding of the second CO molecule. A scheme is proposed to explain these observations based on evidence from static titrations and flash-photolysis experiments, use of carboxymethyl cytochrome c and insoluble cytochrome c, and use of cyanide instead of CO as a ligand.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brown H. D., Chattopadhyay S. K., Patel A. Characteristics of an ATPase in membrane particles, "solubilized", and linked to a cellulose matrix. Enzymologia. 1967 May 31;32(4):205–212. [PubMed] [Google Scholar]
- Brown H. D., Chattopadhyay S. K., Patel A. Sarcoplasmic reticulum ATPase on a solid support. Biochem Biophys Res Commun. 1966 Nov 11;25(3):304–308. doi: 10.1016/0006-291x(66)90776-5. [DOI] [PubMed] [Google Scholar]
- Dupré S., Brunori M., Wilson M. T., Greenwood C. Kinetics of carbon monoxide binding and electron transfer by cytochrome c polymers. Biochem J. 1974 Jul;141(1):299–304. doi: 10.1042/bj1410299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GEORGE P., SCHEJTER A. THE REACTIVITY OF FERROCYTOCHROME C WITH IRON-BINDING LIGANDS. J Biol Chem. 1964 May;239:1504–1508. [PubMed] [Google Scholar]
- GIBSON Q. H., AINSWORTH S. Photosensitivity of haem compounds. Nature. 1957 Dec 21;180(4599):1416–1417. doi: 10.1038/1801416b0. [DOI] [PubMed] [Google Scholar]
- GIBSON Q. H., GREENWOOD C. KINETIC OBSERVATIONS ON THE NEAR INFRARED BAND OF CYTOCHROME C OXIDASE. J Biol Chem. 1965 Jun;240:2694–2698. [PubMed] [Google Scholar]
- GIBSON Q. H. The photochemical formation of a quickly reacting form of haemoglobin. Biochem J. 1959 Feb;71(2):293–303. doi: 10.1042/bj0710293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gabel D., Steinberg I. Z., Katchalski E. Changes in conformation of insolubilized trypsin and chymotrypsin, followed by fluorescence. Biochemistry. 1971 Dec 7;10(25):4661–4669. doi: 10.1021/bi00801a011. [DOI] [PubMed] [Google Scholar]
- Greenwood C., Palmer G. Evidence for the existence of two functionally distinct forms cytochrome c manomer at alkaline pH. J Biol Chem. 1965 Sep;240(9):3660–3663. [PubMed] [Google Scholar]
- Greenwood C., Wilson M. T. Studies on ferricytochrome c. I. Effect of pH, ionic strength and protein denaturants on the spectra of ferricytochrome c. Eur J Biochem. 1971 Sep 13;22(1):5–10. doi: 10.1111/j.1432-1033.1971.tb01507.x. [DOI] [PubMed] [Google Scholar]
- Kaminsky L. S., Burger P. E., Davison A. J., Helfet D. Carbon monoxide as a probe for conformation changes of ferrocytochrome c. Biochemistry. 1972 Sep 26;11(20):3702–3706. doi: 10.1021/bi00770a007. [DOI] [PubMed] [Google Scholar]
- Kay G., Lilly M. D. The chemical attachment of chymotrypsin to water-insoluble polymers using 2-amino-4,6-dichloro-s-triazine. Biochim Biophys Acta. 1970 Feb 11;198(2):276–285. doi: 10.1016/0005-2744(70)90060-4. [DOI] [PubMed] [Google Scholar]
- MARGOLIASH E., FROHWIRT N. Spectrum of horse-heart cytochrome c. Biochem J. 1959 Mar;71(3):570–572. doi: 10.1042/bj0710570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RUPLEY J. A. HORSE HEART CYTOCHROME C. SPECTROPHOTOMETRIC TITRATION AND VISCOSITY CHANGES IN ALKALINE SOLUTION. Biochemistry. 1964 Nov;3:1648–1650. doi: 10.1021/bi00899a008. [DOI] [PubMed] [Google Scholar]
- Schejter A., Aviram I. The effects of alkylation of methionyl residues on the properties of horse cytochrome c. J Biol Chem. 1970 Apr 10;245(7):1552–1557. [PubMed] [Google Scholar]
- Schejter A., George P. Production of a "cytochrome c" with myoglobin-like properties by alkylating the cyanide complex with bromoacetate. Nature. 1965 Jun 12;206(989):1150–1151. doi: 10.1038/2061150a0. [DOI] [PubMed] [Google Scholar]
