Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1975 May;147(2):359–361. doi: 10.1042/bj1470359

Activation of membrane-bound high-affinity calcium ion-sensitive adenosine triphosphatase of human erythrocytes by bivalent metal ions.

H Pfleger, H U Wolf
PMCID: PMC1165450  PMID: 126684

Abstract

The Ca2+-sensitive ATPase (adenosine triphosphatase) of human erythrocyte membranes is activated, not only by Ca2+ ions, but also by a series of other bivalent metal ions including Sr2+, Ba2+, Mn2+, Ni2+, Co2+, Cd2+, Cu2+, Zn2+ and Pb2+. The degree of activation is dependent on the radius of the ion rather than on its nature, in contrast with the dissociation constant of the enzyme--metal ion complex.

Full text

PDF
359

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bond G. H., Green J. W. Effects of monovalent cations on the (Mg 2+ + Ca 2+ )-dependent ATPase of the red cell membrane. Biochim Biophys Acta. 1971 Aug 13;241(2):393–398. doi: 10.1016/0005-2736(71)90038-1. [DOI] [PubMed] [Google Scholar]
  2. Harrison D. G., Long C. The calcium content of human erythrocytes. J Physiol. 1968 Dec;199(2):367–381. doi: 10.1113/jphysiol.1968.sp008658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Koshland D. E., Jr, Neet K. E. The catalytic and regulatory properties of enzymes. Annu Rev Biochem. 1968;37:359–410. doi: 10.1146/annurev.bi.37.070168.002043. [DOI] [PubMed] [Google Scholar]
  4. Lazdunski C., Petitclerc C., Lazdunski M. Structure-function relationships for some metalloalkaline phosphatases of E. coli. Eur J Biochem. 1969 Apr;8(4):510–517. doi: 10.1111/j.1432-1033.1969.tb00556.x. [DOI] [PubMed] [Google Scholar]
  5. Olson E. J., Cazort R. J. Active calcium and strontium transport in human erythrocyte ghosts. J Gen Physiol. 1969 Mar;53(3):311–322. doi: 10.1085/jgp.53.3.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ray W. J., Jr Role of bivalent cations in the phosphoglucomutase system. I. Characterization of enzyme-metal complexes. J Biol Chem. 1969 Jul 25;244(14):3740–3747. [PubMed] [Google Scholar]
  7. Rifkin R. J. In vitro inhibition of Na+-K+ and Mg2+ ATPases by mono, di and trivalent cations. Proc Soc Exp Biol Med. 1965 Dec;120(3):802–804. doi: 10.3181/00379727-120-30658. [DOI] [PubMed] [Google Scholar]
  8. Schatzmann H. J. Dependence on calcium concentration and stoichiometry of the calcium pump in human red cells. J Physiol. 1973 Dec;235(2):551–569. doi: 10.1113/jphysiol.1973.sp010403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Vallee B. L., Williams R. J. Enzyme action: views derived from metalloenzyme studies. Chem Br. 1968 Sep;4(9):397–402. [PubMed] [Google Scholar]
  10. Voth D. Uber das Verhalten von Adenosintriphosphatasen (ATPasen) in verschiedenen Rattenhirnfraktionen unter besonderer Berücksichtigung des Einflusses mono- und bivalenter Kationen. Brain Res. 1967 Feb;4(1):60–80. doi: 10.1016/0006-8993(67)90149-7. [DOI] [PubMed] [Google Scholar]
  11. Wolf H. U. Studies on a Ca 2+ -dependent ATPase of human erythrocyte membranes. Effects of Ca 2+ and H + . Biochim Biophys Acta. 1972 May 9;266(2):361–375. doi: 10.1016/0005-2736(72)90094-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES