Abstract
Cytoplasmic acetoacetyl-CoA thiolase (acetyl-CoA C-acetyltransferase, EC 2.3.1.9) was partially purified from rat liver. The enzyme was irreversibly inactivated by 4-bromocrotonyl-CoA, but-3-ynoyl-CoA, pent-3-ynoyl-CoA and dec-3-ynoyl-CoA. In the case of the alk-3-ynoyl-CoA esters the potency as alkylating agents of acetoacetyl-CoA thiolase decreased with increased chain length of the alk-3-ynoyl moiety. Advantage was taken of the specific action of alk-3-ynoyl-CoA esters on acetoacetyl-CoA thiolase to show that in a postmitochondrial fraction from rat liver they are effective inhibitors of cholesterol synthesis from sodium [2-14C]acetate under conditions when mevalonate conversion into cholesterol and fatty acid synthesis are unafffected. Short-chain alk-3-ynoic acids have little effect on sterol synthesis, although dec-3-ynoic acid is an effective inhibitor owing to its conversion into the CoA ester by the microsomal fatty acyl-CoA synthetase.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abeles R. H., Walsh C. T. Acetylenic enzyme inactivators. Inactivation of gamma-cystathionase, in vitro and in vivo, by propargylglycine. J Am Chem Soc. 1973 Sep 5;95(18):6124–6125. doi: 10.1021/ja00799a053. [DOI] [PubMed] [Google Scholar]
- Akhtar M., Rahimtula A. D., Watkinson I. A., Wilton D. C., Munday K. A. The status of C-6, C-7, C-15 and C-16 hydrogen atoms in cholesterol biosynthesis. Eur J Biochem. 1969 May 1;9(1):107–111. doi: 10.1111/j.1432-1033.1969.tb00582.x. [DOI] [PubMed] [Google Scholar]
- BRODIE J. D., WASSON G., PORTER J. W. The participation of malonyl coenzyme A in the biosynthesis of mevalonic acid. J Biol Chem. 1963 Apr;238:1294–1301. [PubMed] [Google Scholar]
- BUCHER N. L., OVERATH P., LYNEN F. beta-Hydroxy-beta-methyl-glutaryl coenzyme A reductase, cleavage and condensing enzymes in relation to cholesterol formation in rat liver. Biochim Biophys Acta. 1960 Jun 3;40:491–501. doi: 10.1016/0006-3002(60)91390-1. [DOI] [PubMed] [Google Scholar]
- Bar-Tana J., Rose G., Shapiro B. The purification and properties of microsomal palmitoyl-coenzyme A synthetase. Biochem J. 1971 Apr;122(3):353–362. doi: 10.1042/bj1220353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barth C. A., Hackenschmidt H. J., Weis E. E., Decker K. F. Influence of kynuremate on cholesterol and fatty acid synthesis in isolated perfused rat liver. J Biol Chem. 1973 Jan 25;248(2):738–739. [PubMed] [Google Scholar]
- Bloxham D. P., Akhtar M. Studies on the control of cholesterol biosynthesis: the adenosine 3':5'-cyclic monophosphate-dependent accumulation of a steroid carboxylic acid. Biochem J. 1971 Jun;123(2):275–278. doi: 10.1042/bj1230275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bloxham D. P., Wilton D. C., Akhtar M. Studies on the mechanism and regulation of C-4 demethylation in cholesterol biosynthesis. The role of adenosine 3':5'-cyclic monophosphate. Biochem J. 1971 Nov;125(2):625–634. doi: 10.1042/bj1250625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradshaw R. A., Robinson G. W., Hass G. M., Hill R. L. The reaction of fumarase with iodoacetate and 4-bromocrotonate. J Biol Chem. 1969 Apr 10;244(7):1755–1763. [PubMed] [Google Scholar]
- Clinkenbeard K. D., Sugiyama T., Moss J., Reed W. D., Lane M. D. Molecular and catalytic properties of cytosolic acetoacetyl coenzyme A thiolase from avian liver. J Biol Chem. 1973 Apr 10;248(7):2275–2284. [PubMed] [Google Scholar]
- Dempsey M. E. Regulation of steroid biosynthesis. Annu Rev Biochem. 1974;43(0):967–990. doi: 10.1146/annurev.bi.43.070174.004535. [DOI] [PubMed] [Google Scholar]
- ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
- Endo K., Helmkamp G. M., Jr, Bloch K. Mode of inhibition of beta-hydroxydecanoyl thioester dehydrase by 3-decynoyl-N-acetylcysteamine. J Biol Chem. 1970 Sep 10;245(17):4293–4296. [PubMed] [Google Scholar]
- Fimognari G. M., Rodwell V. W. Mevalonate biosynthesis in rat liver. Lipids. 1970 Jan;5(1):104–108. doi: 10.1007/BF02531103. [DOI] [PubMed] [Google Scholar]
- Gehring U., Riepertinger C., Lynen F. Reinigung und Kristallisation der Thiolase, Untersuchungen zum Wirkungsmechanismus. Eur J Biochem. 1968 Nov;6(2):264–280. doi: 10.1111/j.1432-1033.1968.tb00446.x. [DOI] [PubMed] [Google Scholar]
- HERNDON J. H., Jr, SIPERSTEIN M. D. Desmosterol deposition in human and experimental atherosclerosis. Circ Res. 1963 Feb;12:228–234. doi: 10.1161/01.res.12.2.228. [DOI] [PubMed] [Google Scholar]
- Hevey R. C., Babson J., Maycock A. L., Abeles R. H. Highly specific enzyme inhibitors. Inhibition of plasma amine oxidase. J Am Chem Soc. 1973 Sep 5;95(18):6125–6127. doi: 10.1021/ja00799a054. [DOI] [PubMed] [Google Scholar]
- Higgins M. J., Kekwick R. G. An investigation into the role of malonyl-coenzyme A in isoprenoid biosynthesis. Biochem J. 1973 May;134(1):295–310. doi: 10.1042/bj1340295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holland P. C., Clark M. G., Bloxham D. P. Inactivation of pig heart thiolase by 3-butynoyl coenzyme A, 3-pentynoyl coenzyme A, and 4-bromocrotonyl coenzyme A. Biochemistry. 1973 Aug 14;12(17):3309–3315. doi: 10.1021/bi00741a024. [DOI] [PubMed] [Google Scholar]
- Holland P. C., Senior A. E., Sherratt H. S. Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Effects of their coenzyme A esters on enzymes of fatty acid oxidation. Biochem J. 1973 Sep;136(1):173–184. doi: 10.1042/bj1360173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holland P. C., Sherratt H. S. Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Effects of the free acids and their carnitine esters on coenzyme A-dependent oxidations in rat liver mitochondria. Biochem J. 1973 Sep;136(1):157–171. doi: 10.1042/bj1360157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KITZ R., WILSON I. B. Esters of methanesulfonic acid as irreversible inhibitors of acetylcholinesterase. J Biol Chem. 1962 Oct;237:3245–3249. [PubMed] [Google Scholar]
- KORNBERG A., PRICER W. E., Jr Enzymatic synthesis of the coenzyme A derivatives of long chain fatty acids. J Biol Chem. 1953 Sep;204(1):329–343. [PubMed] [Google Scholar]
- LYNEN F. Functional group of coenzyme A and its metabolic relations, especially in the fatty acid cycle. Fed Proc. 1953 Sep;12(3):683–691. [PubMed] [Google Scholar]
- Middleton B. The kinetic mechanism and properties of the cytoplasmic acetoacetyl-coenzyme A thiolase from rat liver. Biochem J. 1974 Apr;139(1):109–121. doi: 10.1042/bj1390109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Middleton B. The oxoacyl-coenzyme A thiolases of animal tissues. Biochem J. 1973 Apr;132(4):717–730. doi: 10.1042/bj1320717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Middleton B., Tubbs P. K. An enzyme-bound intermediate in the biosynthesis of 3-hydroxy-3-methylglutaryl-coenzyme A. Biochem J. 1974 Jan;137(1):15–23. doi: 10.1042/bj1370015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morisaki M., Bloch K. On the mode of interaction of -hydroxydecanoyl thioester dehydrase with allenic acid derivatives. Biochemistry. 1972 Feb 1;11(3):309–314. doi: 10.1021/bi00753a001. [DOI] [PubMed] [Google Scholar]
- Wheather D. W., Snow G. A. Assay of the mycobactins by measurement of the growth of Mycobacterium johnei. Biochem J. 1966 Jul;100(1):47–49. doi: 10.1042/bj1000047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williamson J. R., Rostand S. G., Peterson M. J. Control factors affecting gluconeogenesis in perfused rat liver. Effects of 4-pentenoic acid. J Biol Chem. 1970 Jun;245(12):3242–3251. [PubMed] [Google Scholar]
